Publications

[Home] [DBLP: Computer Science Bibliog raphy] [Citeseer (researchindex)] [Google Scholar]

2015
PDFBibTex
A primer to frequent itemset mining for bioinformatics.
S. Naulaerts, P. Meysman, W. Bittremieux, T. Vu, W. Vanden Berghe, B. Goethals, and K. Laukens.
Briefings in bioinformatics SN - 1467-5463, 16(2):216–231, 2015.
PDFBibTex
Efficient Cluster Detection by Ordered Neighborhoods.
E. Aksehirli, B. Goethals, and E. Müller.
In Proceedings of the 17th International Conference on Big Data Analytics and Knowledge Discovery (DaWaK 2015). 2015.
PDFBibTex
Mining the entire Protein DataBank for frequent spatially cohesive amino acid patterns.
P. Meysman, C. Zhou, B. Cule, B. Goethals, and K. Laukens.
BioData mining, 8(1):4, BioMed Central Ltd 2015.
PDFBibTex
Mining Association Rules in Graphs based on Frequent Cohesive Itemsets.
T. Hendrickx, B. Cule, P. Meysman, S. Naulaerts, K. Laukens, and B. Goethals.
In Proceedings of the the 19th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer 2015.
BibTex
Determining the Presence of Political Parties in Social Circles.
C. Van Gysel, B. Goethals, and M. de Rijke.
In ICWSM 2015: International Conference on Weblogs and Social Media. AAAI 2015.
BibTex
Top-N Recommendation for Shared Accounts.
K. Verstrepen, and B. Goethals.
In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys'15). 2015.
2014
PDFBibTex
Mining Frequent Itemsets in a Stream.
T. Calders, N. Dexters, J. Gillis, and B. Goethals.
Informations Systems, 39:233 - 255, 2014.
PDFBibTex
Interactive and Manual Construction of Classification Trees.
S. Pauwels, S. Moens, and B. Goethals.
In Proceedings of the 23rd Belgian-Dutch Conference on Machine Learning (BENELEARN 2014). 2014.
PDFBibTex
MARBLES: Mining Association Rules Buried in Long Event Sequences.
B. Cule, N. Tatti, and B. Goethals.
Statistical Analysis and Data Mining, 7(2):93-110, Wiley 2014.
PDFBibTex
Providing Concise Database Covers using Recursive Tile Sampling.
S. Moens, M. Boley, and B. Goethals.
In Proceedings Discovery Science 2014, pages 216-227. Springer 2014.
PDFBibTex
Mining Cohesive Itemsets in Graphs.
T. Hendrickx, B. Cule, and B. Goethals.
In Proceedings of the 17th International conference on Discovery Science (DS-2014). 2014.
PDFBibTex
Unifying Nearest Neighbors Collaborative Filtering.
K. Verstrepen, and B. Goethals.
In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys'14). 2014.
PDFBibTex
Discovery of Spatially Cohesive Itemsets in Three-dimensional Protein Structures.
C. Zhou, P. Meysman, B. Cule, K. Laukens, and B. Goethals.
IEEE/ACM Trans. Comput. Biology Bioinform., 2014.
2013
PDFBibTex
Itemset Based Sequence Classification.
C. Zhou, B. Cule, and B. Goethals.
In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Data (ECML PKDD 2013). Springer 2013.
PDFBibTex
Frequent Itemset Mining for Big Data.
S. Moens, E. Aksehirli, and B. Goethals.
In SML: BigData 2013 Workshop on Scalable Machine Learning. IEEE 2013.
PDFBibTex
Mining Spatially Cohesive Itemsets in Protein Molecular Structures.
C. Zhou, P. Meysman, B. Cule, K. Laukens, and B. Goethals.
In BioKDD'13: 12th International Workshop on Data Mining in Bioinformatics Proceedings. 2013.
PDFBibTex
Cartification: A Neighborhood Preserving Transformation for Mining High Dimensional Data.
E. Aksehirli, B. Goethals, E. Müller, and J. Vreeken.
In Data Mining, 2013. ICDM 2013. Thirteenth IEEE International Conference on. IEEE (to appear) 2013.
PDFBibTex
Mining Interesting Itemsets in Graph Datasets.
B. Cule, B. Goethals, and T. Hendrickx.
In Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-2013). 2013.
BibTex
ClaSP: An Efficient Algorithm for Mining Frequent Closed Sequences.
A. Gomariz, M. Campos, R. Marin, and B. Goethals.
In Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-2013). 2013.
BibTex
A primer to frequent itemset mining for bioinformatics.
S. Naulaerts, P. Meysman, W. Bittremieux, T. Vu, W. Vanden Berghe, B. Goethals, and K. Laukens.
Briefings in bioinformatics:1–16, 2013.
PDFBibTex
Randomly Sampling Maximal Itemsets.
S. Moens, and B. Goethals.
In IDEA: KDD 2013 Workshop on Interactive Data Exploration and Analytics in Proc ACM SIGKDD. 2013.
2012
BibTex
Mining Frequent Conjunctive Queries in Relational Databases through Dependency Discovery.
B. Goethals, D. Laurent, W. Le Page, and C. Dieng.
Knowledge and Information Systems, Springer To appear 2012.
PDFBibTex
MARBLES: Mining Association Rules Buried in Long Event Sequences.
B. Cule, N. Tatti, and B. Goethals.
In Proceedings of the SIAM International Conference on Data Mining (SDM). SIAM 2012.
PDFBibTex
An inductive database system based on virtual mining views.
H. Blockeel, T. Calders, \. Fromont, B. Goethals, A. Prado, and C. Robardet.
Data Mining and Knowledge Discovery, 24(1):247-287, Springer 2012.
BibTex
Proceedings of the 12th IEEE International Conference on Data Mining (ICDM'12), IEEE, 2012.
A. Siebes, M. Zaki, J. Yu, B. Goethals, G. Webb, and X. Wu (Eds.).
IEEE 2012.
BibTex
Proceedings of the 12th IEEE International Conference on Data Mining Workshops (ICDMW'12), IEEE, 2012.
J. Vreeken, C. Ling, A. Siebes, M. Zaki, J. Yu, B. Goethals, G. Webb, and X. Wu (Eds.).
IEEE 2012.
BibTex
Cartification: From Similarities to Itemset Frequencies.
B. Goethals.
In Proceedings of the 10th International Conference on Formal Concept Analysis (ICFCA), Vol. 7278 of Lecture Notes in Computer Science, pages 4. Springer 2012.
BibTex
Top-10 Data Mining Case Studies.
G. Zaiane.
International Journal of Information Technology and Decision Making, 11(2):389-400, 2012.
2011
PDFBibTex
MIME: A Framework for Interactive Visual Pattern Mining.
B. Goethals, S. Moens, and J. Vreeken.
In Proceedings of the 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). ACM 2011.
BibTex
MIME: A Framework for Interactive Visual Pattern Mining.
B. Goethals, S. Moens, and J. Vreeken.
In Proceedings of ECML PKDD 2011, Vol. 6913 of Lecture Notes in Computer Science, pages 634-637. Springer 2011.
PDFBibTex
BioGraph: Unsupervised Biomedical Knowledge Discovery via Automated Hypothesis Generation.
A. Liekens, J. De Knijf, W. Daelemans, B. Goethals, P. De Rijk, and J. Del-Favero.
Genome Biology, 12(6), 2011.
PDFBibTex
Mining Train Delays.
B. Cule, B. Goethals, S. Tassenoy, and S. Verboven.
In Proceedings of the 4th International Seminar on Railway Operations Modelling and Analysis (RailRome 2011). 2011.
BibTex
Mining Train Delays.
B. Cule, B. Goethals, S. Tassenoy, and S. Verboven.
In Proceedings of the 10th International Symposium on Intelligent Data Analysis (IDA 2011). 2011.
PDFBibTex
"Tell Me More”: Finding Related Items from User Provided Feedback.
J. De Knijf, A. Liekens, and B. Goethals.
In Proceedings of the Fourteenth International Conference on Discovery Science (DS 2011). 2011.
PDFBibTex
GaMuSo: Graph based Music recommendation in a Social bookmarking service.
J. De Knijf, A. Liekens, and B. Goethals.
In Proceedings of the 10th International Symposium on Intelligent Data Analysis (IDA 2011). 2011.
PDFBibTex
An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data.
T. Vu, D. Valkenborg, K. Smets, K. Verwaest, R. Dommisse, F. Lemiere, A. Verschoren, B. Goethals, and K. Laukens.
BMC Bioinformatics, 12(1):405, 2011.
2010
PDFBibTex
Efficient Pattern Mining from Uncertain Data with Sampling.
T. Calders, C. Garboni, and B. Goethals.
In Advances in Knowledge Discovery and Data Mining, Vol. 6118 of Lecture Notes in Computer Science. Springer 2010.
PDFBibTex
Mining Association Rules in Long Sequences.
B. Cule, and B. Goethals.
In Advances in Knowledge Discovery and Data Mining, Vol. 6118 of Lecture Notes in Computer Science. Springer 2010.
PDFBibTex
Inductive querying with virtual mining views.
H. Blockeel, T. Calders, E. Fromont, B. Goethals, A. Prado, and C. Robardet.
In Inductive Databases and Constraint-Based Data Mining, pages 265–287. Springer 2010.
PDFBibTex
A practical comparative study of data mining query languages.
H. Blockeel, T. Calders, E. Fromont, B. Goethals, A. Prado, and C. Robardet.
In Inductive Databases and Constraint-Based Data Mining, pages 59–77. Springer 2010.
PDFBibTex
Approximating Frequentness Probability of Itemsets in Uncertain Data.
T. Calders, C. Garboni, and B. Goethals.
In Proceedings of the IEEE International Conference on Data Mining (ICDM). IEEE Computer Society 2010.
BibTex
Inductive Databases and Constraint-Based Data Mining.
S. Dzeroski, B. Goethals, and P. Panov (Eds.).
Springer 2010.
PDFBibTex
Discovery and application of functional dependencies in conjunctive query mining.
B. Goethals, D. Laurent, and W. Le Page.
In Proceedings of DaWak 2010. Springer 2010.
BibTex
Frequent Set Mining.
B. Goethals.
In Data Mining and Knowledge Discovery Handbook, pages 321-338. Springer 2010.
PDFBibTex
Mining Interesting Sets and Rules in Relational Databases.
B. Goethals, W. Le Page, and M. Mampaey.
In Proceedings of the 25th ACM Symposium on Applied Computing (ACM SAC), Vol. 2, pages 996–1000. ACM 2010.
BibTex
Special issue on the best papers of SDM'10.
B. Goethals, and J. Pei.
Statistical Analysis and Data Mining, 3(6):359-360, Wiley 2010.
BibTex
Predicting the severity of a reported bug.
A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals.
In Proceedings of the 7th IEEE Working Conference on Mining Software Repositories (MSR), pages 1-10. IEEE Computer Society 2010.
BibTex
Proceedings of the SIAM International Conference on Data Mining (SDM).
B. Goethals, and J. Pei (Eds.).
SIAM 2010.
PDFBibTex
Useful patterns (UP’10): ACM SIGKDD Workshop Report.
J. Vreeken, N. Tatti, and B. Goethals.
SIGKDD Explorations, 12(2):56–58, ACM 2010.
BibTex
UP '10: Proceedings of the ACM SIGKDD Workshop on Useful Patterns 2010.
J. Vreeken, N. Tatti, and B. Goethals (Eds.).
ACM 2010.
2009
PDFBibTex
A new constraint for mining sets in sequences.
B. Cule, B. Goethals, and C. Robardet.
In Proceedings of the SIAM Int. Conf. on Data Mining (SDM). SIAM 2009.
PDFBibTex
Apriori Property and Breadth-First Search Algorithms.
B. Goethals.
In Encyclopedia of Database Systems, pages 124-127. Springer 2009.
PDFBibTex
Mining Interesting Sets and Rules in Relational Databases.
B. Goethals, W. Le Page, and M. Mampaey.
Technical Report of Universiteit Antwerpen (09.02).
PDFBibTex
Levelwise Cluster Mining under a Maximum SSE Constraint.
J. Knijf, B. Goethals, and A. Prado.
In From Local Patterns to Global Models (LeGo 2009). 2009.
BibTex
A new technique for sequential pattern mining under regular expressions.
R. Trasarti, F. Bonchi, and B. Goethals.
In Proceedings of the Italian Symposium on Advanced Database Systems (SEBD), pages 325-332. Edizioni Seneca 2009.
2008
PDFBibTex
Automatic Vandalism Detection in Wikipedia: Towards a Machine Learning Approach.
K. Smets, B. Goethals, and B. Verdonk.
In Proceedings of the AAAI Workshop on Wikipedia and Artificial Intelligence: An Evolving Synergy (WikiAI), pages 43–48. AAAI Press 2008.
PDFBibTex
Mining Association Rules of Simple Conjunctive Queries.
B. Goethals, W. Le Page, and H. Mannila.
In Proceedings of the SIAM Int. Conf. on Data Mining (SDM). SIAM 2008.
BibTex
Guest Editors' Introduction: Special issue of Selected Papers from ECML PKDD 2008.
W. Daelemans, B. Goethals, and K. Morik.
Data Mining Knowledge Discovery, 17(1):1-2, 2008.
BibTex
European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2008), Part I.
W. Daelemans, B. Goethals, and K. Morik (Eds.).
Vol. 5211 of Lecture Notes in Computer Science. Springer 2008.
BibTex
European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2008), Part 2.
W. Daelemans, B. Goethals, and K. Morik (Eds.).
Vol. 5212 of Lecture Notes in Computer Science. Springer 2008.
PDFBibTex
Sequence Mining Automata: a New Technique for Mining Frequent Sequences Under Regular Expressions.
R. Trasarti, F. Bonchi, and B. Goethals.
In Proc. of IEEE ICDM International Conference on Data Mining. IEEE Computer Society 2008.
PDFBibTex
Mining Frequent Items in a Stream using Flexible Windows.
T. Calders, N. Dexters, and B. Goethals.
Intelligent Data Analysis, 12(3), IOS Press May 2008.
PDFBibTex
An Inductive Database Prototype Based on Virtual Mining Views.
H. Blockeel, T. Calders, E. Fromont, B. Goethals, A. Prado, and C. Robardet.
In 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). ACM 2008.
PDFBibTex
Mining Views: Database Views for Data Mining.
H. Blockeel, T. Calders, E. Fromont, B. Goethals, and A. Prado.
In Proceedings of the IEEE International Conference on Data Engineering (ICDE). IEEE Computer Society 2008.
BibTex
Guest Editors' introduction: special issue of selected papers from ECML PKDD 2008.
W. Daelemans, B. Goethals, and K. Morik.
Machine Learning, 72(3):155-156, 2008.
2007
PDFBibTex
Non-Derivable Itemset Mining.
T. Calders, and B. Goethals.
Data Mining and Knowledge Discovery, 14(1):171–206, Springer February 2007.
PDFBibTex
A New Support Measure for Items in Streams.
T. Calders, N. Dexters, and B. Goethals.
Le Monde des Utilisateurs de L'Analyse de Données (La Revue MODULAD), 36:37–41, 2007.
PDFBibTex
Mining Views: Database Views for Data Mining.
H. Blockeel, T. Calders, E. Fromont, B. Goethals, and A. Prado.
In ECML/PKDD-2007 International Workshop on Constraint-Based Mining and Learning (CMILE). 2007.
BibTex
Finding interesting queries in relational databases.
B. Goethals.
In Extraction et gestion des connaissances (EGC'2007), Vol. RNTI-E-9 of Revue des Nouvelles Technologies de l'Information, pages 5. Cépaduès-éditions 2007.
PDFBibTex
Mining frequent itemsets in a stream.
T. Calders, N. Dexters, and B. Goethals.
In Proceedings of the IEEE International Conference on Data Mining (ICDM), pages 83–92. IEEE Computer Society 2007.
PDFBibTex
Mining itemsets in the presence of missing values.
T. Calders, B. Goethals, and M. Mampaey.
In Proceedings of the ACM Symposium on Applied Computing, pages 404–408. ACM 2007.
2006
PDFBibTex
Mining Frequent Items in a Stream Using Flexible Windows.
T. Calders, N. Dexters, and B. Goethals.
In ECML/PKDD-2006 International Workshop on Knowledge Discovery from Data Streams (IWKDDS). 2006.
PDFBibTex
Integrating Pattern Mining in Relational Databases.
T. Calders, B. Goethals, and A. Prado.
In Proceedings of the Int. Conf. Principles of Data Mining and Knowledge Discovery (PKDD). Springer 2006.
PDFBibTex
Constraint Extraction from SQL-queries (manuscript).
T. Calders, B. Goethals, and A. Prado.
BibTex
Proceedings of the 9th International Workshop on High Performance and Distributed Data Mining.
B. Goethals, and B. Park (Eds.).
2006.
PDFBibTex
Mining Rank-Correlated Sets of Numerical Attributes.
T. Calders, B. Goethals, and S. Jaroszewicz.
In 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). ACM 2006.
2005
PDFBibTex
Quick Inclusion-Exclusion.
T. Calders, and B. Goethals.
In Proceedings ECML-PKDD 2005 Workshop Knowledge Discovery in Inductive Databases, Vol. 3933 of LNCS. Springer 2005.
PDFBibTex
Depth-first non-derivable itemset mining.
T. Calders, and B. Goethals.
In Proceedings of the SIAM Int. Conf. on Data Mining (SDM). SIAM 2005.
PDFBibTex
Frequent Set Mining.
B. Goethals.
In The Data Mining and Knowledge Discovery Handbook, pages 377-397. Springer 2005.
PDFBibTex
Mining Tree Queries in a Graph.
B. Goethals, E. Hoekx, and J. Van den Bussche.
In 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages 61–69. 2005.
PDFBibTex
Mining Non-Derivable Association Rules.
B. Goethals, J. Muhonen, and H. Toivonen.
In Proc. of the SIAM International Conference on Data Mining. SIAM 2005.
BibTex
Proceedings of the ACM SIGKDD Open Source Data Mining Workshop.
B. Goethals, S. Nijssen, and M. Zaki (Eds.).
ACM 2005.
PDFBibTex
Open source data mining: workshop report.
B. Goethals, S. Nijssen, and M. Zaki.
SIGKDD Explorations Newsletter, 7(2):143–144, ACM Press 2005.
PDFBibTex
Tight upper bounds on the number of candidate patterns.
F. Geerts, B. Goethals, and J. Van den Bussche.
ACM Transactions on Database Systems, 30(2):333–363, 2005.
2004
BibTex
Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI 2004).
J. Bayardo, B. Goethals, and M. Zaki (Eds.).
Vol. 126 of CEUR Workshop Proceedings. CEUR-WS.org 2004.
PDFBibTex
Advances in Frequent Itemset Mining Implementations: Report of FIMI'03.
B. Goethals, and M. Zaki.
ACM SIGKDD Explorations, 6(1):109–117, ACM June 2004.
PDFBibTex
FP-Bonsai: the Art of Growing and Pruning Small FP-trees.
F. Bonchi, and B. Goethals.
In Proceedings of the Eighth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'04), Vol. 3056 of LNCS, pages 155–160. Springer 2004.
PDFBibTex
Tiling Databases.
F. Geerts, B. Goethals, and T. Mielikäinen.
In Discovery Science, Vol. 3245 of Lecture Notes in Computer Science, pages 278–289. Springer 2004.
PDFBibTex
On Private Scalar Product Computation for Privacy-Preserving Data Mining.
B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen.
In ICISC, Vol. 3506 of Lecture Notes in Computer Science, pages 104–120. Springer 2004.
BibTex
Proceedings of the Third International Workshop on Knowledge Discovery in Inductive Databases (KDID 2004) Revised Selected and Invited Papers.
B. Goethals, and A. Siebes (Eds.).
Vol. 3377 of Lecture Notes in Computer Science. Springer 2004.
PDFBibTex
Memory issues in frequent itemset mining.
B. Goethals.
In Proceedings of the 2004 ACM Symposium on Applied Computing (SAC'04), pages 530–534. ACM 2004.
2003
PDFBibTex
Minimal k-Free Representations of Frequent Sets.
T. Calders, and B. Goethals.
In Proceedings of the Int. Conf. Principles of Data Mining and Knowledge Discovery (PKDD), pages 71–82. 2003.
BibTex
Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations (FIMI'03).
B. Goethals, and M. Zaki (Eds.).
Vol. 90 of CEUR Workshop Proceedings. CEUR-WS.org 2003.
PDFBibTex
Advances in Frequent Itemset Mining Implementations: Introduction to FIMI03.
B. Goethals, and M. Zaki.
In Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations (FIMI'03).
PDFBibTex
Survey on Frequent Pattern Mining.
B. Goethals.
PDFBibTex
What You Store is What You Get.
F. Geerts, B. Goethals, and T. Mielikäinen.
In Proceedings of the Second International Workshop on Inductive Databases, pages 60-69. 2003.
2002
PDFBibTex
Mining All Non-Derivable Frequent Itemsets.
T. Calders, and B. Goethals.
In Principles of Data Mining and Knowledge Discovery, Vol. 2431 of Lecture Notes in Computer Science, pages 74–85. Springer 2002.
PDFBibTex
Efficient Frequent Pattern Mining.
B. Goethals.
PhD thesis (transnationale Universiteit Limburg);
PDFBibTex
Relational Association Rules: getting WARMeR.
B. Goethals, and J. Van den Bussche.
In Proceedings of the ESF Exploratory Workshop on Pattern Detection and Discovery in Data Mining, Vol. 2447 of LNCS, pages 125–139. Springer-Verlag 2002.
2001
PDFBibTex
A tight upper bound on the number of candidate patterns.
F. Geerts, B. Goethals, and J. Van den Bussche.
In Proceedings of the 2001 IEEE International Conference on Data Mining, pages 155–162. IEEE Computer Society 2001.
2000
PDFBibTex
On Supporting interactive association rule mining.
B. Goethals, and J. Van den Bussche.
In Proceedings of the Second International Conference on Data Warehousing and Knowledge Discovery, Vol. 1874 of Lecture Notes in Computer Science, pages 307–316. Springer 2000.
PDFBibTex
A Data Mining Framework for Optimal Product Selection in Retail Supermarket Data: The Generalized PROFSET Model.
T. Brijs, B. Goethals, G. Swinnen, K. Vanhoof, and G. Wets.
In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 300–304. ACM Press 2000.
1999
PDFBibTex
A priori versus a posteriori filtering of association rules.
B. Goethals, and J. Van den Bussche.
In Proceedings of the SIGMOD'99 Workshop on Research Issues on Data Mining and Knowledge Discovery. 1999.
1998
PDFBibTex
Decision support queries for the interpretation of data mining results.
B. Goethals, J. Van den Bussche, and K. Vanhoof.