Hash-Based Indexing

Efficient Support for Equality Search
Hash-Based Indexing

• We now turn to a different family of index structures: hash indexes.

• Hash indexes are “unbeatable” when it comes to support for equality selections:

```sql
1  SELECT  *
2  FROM    R
3  WHERE   A = k
```

• Further, other query operations internally generate a flood of equality tests (e.g., nested-loop join).
(Non-)presence of hash index support can make a real difference in such scenarios.
Hashing vs. B^+-trees

• Hash indexes provide no support for range queries, however (hash indexes are also know as scatter storage).
• In a B^+-tree-world, to locate a record with key k means to compare k with other keys k' organized in a (tree-shaped) search data structure.
• Hash indexes use the bits of k itself (independent of all other stored records) to find the location of the associated record.
• We will now briefly look into static hashing to illustrate the basics.
 • Static hashing does not handle updates well (much like ISAM).
 • Later, we introduce extendible hashing and linear hashing which refine the hashing principle and adapt well to record insertions and deletions.
Static Hashing

- To build a **static hash index** on attribute \(A \):

<table>
<thead>
<tr>
<th>Build static hash index on column (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Allocate a fixed area of (N) (successive) disk pages, the so-called primary buckets.</td>
</tr>
<tr>
<td>2. In each bucket, install a pointer to a chain of overflow pages (initially set the pointer to null).</td>
</tr>
<tr>
<td>3. Define a hash function (h) with range ([0, \ldots, N - 1]). The domain of (h) is the type of (A), e.g.:</td>
</tr>
</tbody>
</table>

\[
h : \text{INTEGER} \rightarrow [0, \ldots, N - 1]
\]

if \(A \) is of SQL type **INTEGER**.
Static Hashing

A primary bucket and its associated chain of overflow pages is referred to as a **bucket** (above).

Each bucket contains **index entries** k (implemented using any of the variants A, B, C, see slide 0.0).
Static Hashing

• To perform \texttt{hsearch}(k) (or \texttt{hinsert}(k)/\texttt{hdelete}(k)) for a record with key \(A = k \):

Static hashing scheme

1. **Apply hash function** \(h \) to the key value, \(i.e., \text{compute} \ h(k) \).
2. **Access the primary bucket page** with number \(h(k) \).
3. Search (insert/delete) subject record on this page or, if required, **access the overflow chain** of bucket \(h(k) \).

• If the hashing scheme works well and overflow chain access is avoidable,
 • \texttt{hsearch}(k) requires a **single I/O operation**,
 • \texttt{hinsert}(k)/\texttt{hdelete}(k) require **two I/O operations**.
Static Hashing: Collisions and Overflow Chains

- At least for static hashing, **overflow chain management** is important.
- Generally, we do **not** want hash function \(h \) to avoid **collisions**, i.e.,

\[
h(k) = h(k') \quad \text{even if} \quad k \neq k'
\]

(otherwise we would need as many primary bucket pages as different key values in the data file).
- At the same time, we want \(h \) to **scatter** the key attribute domain **evenly** across \([0, \ldots , N - 1]\) to avoid the development of long overflow chains for few buckets. This makes the hash tables’ I/O behavior non-uniform and unpredictable for a query optimizer.
- Such “good” hash functions are hard to discover, unfortunately.
The Birthday Paradox (Need for Overflow Chain Management)

Example (The birthday paradox)

Consider the people in a group as the **domain** and use their birthday as **hash function** \(h \) \((h : \text{Person} \rightarrow [0, \ldots, 364]) \).

If the group has 23 or more members, chances are > 50 % that two people share the same birthday (collision).

Check: Compute the probability that \(n \) people *all have different birthdays*:

Function: `different_birthday(n)`

1. `if n = 1 then`
2. `return 1;`
3. `else`
4. `return different_birthday(n - 1) \times \frac{365 - (n - 1)}{365} ;`
5. `probability that \(n-1 \) persons have different birthdays`
 `probability that \(n \)th person has birthday different from first \(n-1 \) persons`
Hash Functions

- It is impossible to generate truly random hash values from the non-random key values found in actual table. Can we define hash functions that scatter even better than a random function?

Hash function

1. **By division.** Simply define

 \[h(k) = k \mod N . \]

 This guarantees the range of \(h(k) \) to be \([0, \ldots, N - 1]\).

 Note: Choosing \(N = 2^d \) for some \(d \) effectively considers the least \(d \) bits of \(k \) only. **Prime numbers** work best for \(N \).

2. **By multiplication.** Extract the fractional part of \(Z \cdot k \) (for a specific \(Z^1 \)) and multiply by arbitrary hash table size \(N \):

 \[h(k) = \lfloor N \cdot (Z \cdot k - \lfloor Z \cdot k \rfloor) \rfloor \]

\(^1\)The (inverse) **golden ratio** \(Z = \frac{2}{(\sqrt{5}+1)} \approx 0.6180339887 \) is a good choice. See D.E.Knuth, “Sorting and Searching.”
Static Hashing and Dynamic Files

• For a static hashing scheme:
 • If the underlying **data file grows**, the development of overflow chains spoils the otherwise predictable behavior hash I/O behavior (1–2 I/O operations).
 • If the underlying **data file shrinks**, a significant fraction of primary hash buckets may be (almost) empty—a waste of page space.
 • As in the ISAM case, however, static hashing has advantages when it comes to concurrent access.
 • We may periodically **rehash** the data file to restore the ideal situation (20% free space, no overflow chains).

⇒ Expensive and the index cannot be used while rehashing is in progress.
Extendible Hashing

- **Extendible Hashing** can adapt to growing (or shrinking) data files.
- To keep track of the actual primary buckets that are part of the current hash table, we hash via an **in-memory bucket directory**:

\[\text{Example (Extendible hash table setup; ignore the 2 fields for now)} \]

\[\begin{array}{c}
\text{hash table} \\
\text{directory} \\
\hline
00 & 01 & 10 & 11 \\
\hline
\text{bucket A} & \text{bucket B} & \text{bucket C} & \text{bucket D} \\
\hline
& & & \\
\hline
2 & 2 & 2 & 2 \\
\hline
\end{array} \]

\[h(k) \]

\[\text{Note: This figure depicts the entries as } h(k)\ast, \text{ not } k\ast. \]
Extendible Hashing: Search

Search for a record with key k

1. Apply h, i.e., compute $h(k)$.
2. Consider the last 2 bits of $h(k)$ and follow the corresponding directory pointer to find the bucket.

Example (Search for a record)

To find a record with key k such that $h(k) = 5 = 101_2$, follow the second directory pointer ($101_2 \land 11_2 = 01_2$) to bucket B, then use entry 5* to access the wanted record.
Extendible Hashing: Global and Local Depth

Global and local depth annotations

- **Global depth** (n at hash directory):
 Use the last n bits of $h(k)$ to lookup a bucket pointer in the directory (the directory size is 2^n).
Extendible Hashing: Global and Local Depth

Global and local depth annotations

- **Global depth** (\(n\) at hash directory):
 Use the last \(n\) bits of \(h(k)\) to lookup a bucket pointer in the directory (the directory size is \(2^n\)).

- **Local depth** (\(d\) at individual buckets):
 The hash values \(h(k)\) of all entries in this bucket agree on their last \(d\) bits.
Extendible Hashing: Insert

Insert record with key k

1. Apply h, i.e., compute $h(k)$.
2. Use the last n bits of $h(k)$ to lookup the bucket pointer in the directory.
3. If the primary bucket still has capacity, store $h(k)^*$ in it. (Otherwise . . . ?)

Example (Insert record with $h(k) = 13 = 1101_2$)
Extendible Hashing: Insert, Bucket Split

Example (Insert record with \(h(k) = 20 = 10100_2 \))

Insertion of a record with \(h(k) = 20 = 10100_2 \) leads to **overflow in primary bucket** \(A \). Initiate a **bucket split** for \(A \).

1. **Split** bucket \(A \) (creating a new bucket \(A_2 \)) and use bit position \(d + 1 \) to redistribute the entries:

\[
\begin{align*}
4 &= 100_2 \\
12 &= 1100_2 \\
32 &= 100000_2 \\
16 &= 10000_2 \\
20 &= 10100_2
\end{align*}
\]

<table>
<thead>
<tr>
<th>Bucket A</th>
<th>32 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucket A2</td>
<td>4 12 20</td>
</tr>
</tbody>
</table>

Note: We now need 3 bits to discriminate between the old bucket \(A \) and the new split bucket \(A_2 \).
Extendible Hashing: Insert, Directory Doubling

Example (Insert record with $h(k) = 20 = 10100_2$)

2. *In the present case,* we need to **double the directory** by simply copying its original pages (we now use $2 + 1 = 3$ bits to lookup a bucket pointer).

3. Let bucket pointer for 100_2 point to A2 (the directory pointer for 000_2 still points to bucket A):

![Diagram of directory and buckets](image-url)
Extendible Hashing: Insert

If we split a bucket with local depth $d < n$ (global depth), directory doubling is not necessary:

Example (Insert record with $h(k) = 9 = 1001_2$)

- Insert record with key k such that $h(k) = 9 = 1001_2$.

- The associated bucket B is split, creating a new bucket B_2. Entries are redistributed. New local depth of B and B_2 is 3 and thus does not exceed the global depth of 3.

\Rightarrow Modifying the directory’s bucket pointer for 101_2 is sufficient (see following slide).
Extendible Hashing: Insert

Example (After insertion of record with $h(k) = 9 = 1001_2$)

- **Bucket A**:
 - Key: 3
 - Values: 32*, 16*
- **Bucket B**:
 - Key: 3
 - Values: 1*, 9*
- **Bucket C**:
 - Key: 2
 - Values: 10*
- **Bucket D**:
 - Key: 2
 - Values: 15*, 7*, 19*
- **Bucket A2**:
 - Key: 3
 - Values: 4*, 12*, 20*
- **Bucket B2**:
 - Key: 3
 - Values: 5*, 21*, 13*
The following $h\text{search}(\cdot)$ and $h\text{insert}(\cdot)$ procedures operate over an in-memory array representation of the bucket directory $bucket[0, \ldots, 2^n - 1]$.

Extendible Hashing: Search

```plaintext
Function: hsearch(k)

1. $n \leftarrow \lceil \log_2(b) \rceil$; /* global depth */
2. $b \leftarrow h(k) \& (2^n - 1)$; /* mask all but the low $n$ bits */
3. return $bucket[b]$;
```
Extendible Hashing: Insert Procedure

Extendible Hashing: Insertion

```plaintext
Function: hinsert(k*)

1. \( n \leftarrow n; \) /* global depth */
2. \( b \leftarrow \text{hsearch}(k); \)
3. if \( b \) has capacity then
   4. Place \( k* \) in bucket \( b; \)
   5. return;
4. /* overflow in bucket \( b \), need to split */
5. \( d \leftarrow d_b; \) /* local depth of hash bucket \( b \) */
6. Create a new empty bucket \( b2; \)
7. /* redistribute entries of \( b \) including \( k* \) */
```

Hash-Based Indexing

Static Hashing

Hash Functions

Extendible Hashing

Search

Insertion

Procedures

Linear Hashing

Insertion (Split, Rehashing)

Running Example

Procedures
Extendible Hashing: Insert Procedure (continued)

Extendible Hashing: Insertion (cont’d)

/* redistribute entries of b including k*/

foreach k’* in bucket b do
 if h(k’) & 2^d ≠ 0 then
 Move k’* to bucket b2;

/* new local depths for buckets b and b2*/

d_b ← d + 1;
d_{b2} ← d + 1;

if n < d + 1 then
 /* we need to double the directory*/
 Allocate 2^n new directory entries bucket[2^n, . . . , 2^{n+1} − 1];
 Copy bucket[0, . . . , 2^n − 1] into bucket[2^n, . . . , 2^{n+1} − 1];
 n ← n + 1;
 /* update the bucket directory to point to b2*/
 bucket[(h(k) & (2^n − 1)) | 2^n] ← addr(b2)
Overflow chains?

Extendible hashing uses overflow chains hanging off a bucket only as a resort. Under which circumstances will extendible hashing create an overflow chain?

If considering $d + 1$ bits does not lead to satisfying record redistribution in procedure $\text{hinsert}(k)$ (skewed data, hash collisions).

• Deleting an entry k from a bucket may leave its bucket completely (or almost) empty.

• Extendible hashing then tries to merge the empty bucket and its associated partner bucket.

Extendible hashing: deletion

When is local depth decreased? When is global depth decreased? (Try to work out the details on your own.)
Extendible Hashing: Overflow Chains? / Delete

Overflow chains?

Extendible hashing uses overflow chains hanging off a bucket only as a resort. Under which circumstances will extendible hashing create an overflow chain?

If considering $d + 1$ bits does not lead to satisfying record redistribution in procedure $hinsert(k)$ (skewed data, hash collisions).

- Deleting an entry k^* from a bucket may leave its bucket completely (or almost) empty.
- Extendible hashing then tries to **merge** the empty bucket and its associated partner bucket.

Extendible hashing: deletion

When is local depth decreased? When is global depth decreased? (Try to work out the details on your own.)
Linear Hashing

- **Linear hashing** can, just like extendible hashing, adapt its underlying data structure to record insertions and deletions:
 - Linear hashing **does not need a hash directory** in addition to the actual hash table buckets.
 - Linear hashing can define **flexible criteria that determine when a bucket is to be split**,
 - Linear hashing, however, may perform bad if the key distribution in the data file is **skewed**.

- We will now investigate linear hashing in detail and come back to the points above as we go along.

- The core idea behind linear hashing is to use an **ordered family of hash functions**, h_0, h_1, h_2, \ldots (traditionally the subscript is called the hash function’s **level**).
Linear Hashing: Hash Function Family

- We design the family so that the range of $h_{level+1}$ is twice as large as the range of h_{level} (for level = 0, 1, 2, ...).

Example (h_{level} with range $[0, \ldots, N - 1]$)
Hash-Based Indexing: Hash Function Family

- Given an initial hash function \(h \) and an initial hash table size \(N \), one approach to define such a family of hash functions \(h_0, h_1, h_2, \ldots \) would be:

\[
h_{\text{level}}(k) = h(k) \mod (2^{\text{level}} \cdot N) \quad (\text{level} = 0, 1, 2, \ldots)
\]
Linear Hashing: Basic Scheme

Basic linear hashing scheme

1. Initialize: level ← 0, next ← 0.

2. The current hash function in use for searches (insertions/deletions) is \(h_{level} \), active hash table buckets are those in \(h_{level} \)'s range: \([0, \ldots, 2^{level} \cdot N - 1]\).

3. Whenever we realize that the current hash table overflows, e.g.,
 - insertions filled a primary bucket beyond \(c \% \) capacity,
 - or the overflow chain of a bucket grew longer than \(p \) pages,
 - or \(\langle \text{insert your criterion here} \rangle \)

 we split the bucket at hash table position next
 (in general, this is not the bucket which triggered the split!)

Linear Hashing: Bucket Split

Linear hashing: bucket split

1. **Allocate a new bucket, append** it to the hash table (its position will be $2^{level} \cdot N + next$).

2. **Redistribute** the entries in bucket $next$ by **rehashing** them via $h_{level+1}$ (some entries will remain in bucket $next$, some go to bucket $2^{level} \cdot N + next$). For $next = 0$:

 - $h_{level+1}$
 - \vdots
 - $2^{level} \cdot N - 1$
 - $2^{level} \cdot N + next$

 0 $\leftarrow next$

3. **Increment** $next$ by 1.

 \Rightarrow All buckets with positions $< next$ have been rehashed.
Linear Hashing: Rehashing

Searches need to take current next position into account

\[h_{\text{level}}(k) \begin{cases} < next: \text{we hit an already split bucket, rehash} \\ \geq next: \text{we hit a yet unsplit bucket, bucket found} \end{cases} \]

Example (Current state of linear hashing scheme)

- **Range of \(h_{\text{level}} \):**
 - Buckets already split (\(h_{\text{level}+1} \))
 - Next bucket to be split
 - Unsplit buckets (\(h_{\text{level}} \))
 - Images of already split buckets (\(h_{\text{level}+1} \))

- **Range of \(h_{\text{level}+1} \):**
 - Hash buckets

- 0

- \(2^{\text{level}} \cdot N - 1 \)
When *next* is incremented beyond hash table size...?

A bucket split increments *next* by 1 to mark the next bucket to be split. How would you propose to handle the situation when *next* is incremented *beyond* the last current hash table position, *i.e.*

\[
next > 2^{\text{level}} \cdot N - 1?
\]
Linear Hashing: Split Rounds

When next is incremented beyond hash table size...?

A bucket split increments next by 1 to mark the next bucket to be split. How would you propose to handle the situation when next is incremented beyond the last current hash table position, i.e.

\[\text{next} > 2^{\text{level}} \cdot N - 1 \]?

Answer:

• If \(\text{next} > 2^{\text{level}} \cdot N - 1 \), all buckets in the current hash table are hashed via function \(h_{\text{level}+1} \).

⇒ Proceed in a round-robin fashion:
If \(\text{next} > 2^{\text{level}} \cdot N - 1 \), then

1. Increment level by 1,
2. next ← 0 (start splitting from hash table top again).

• In general, an overflowing bucket is not split immediately, but—due to round-robin splitting—no later than in the following round.
Linear Hashing: Running Example

Linear hash table setup:
- Bucket capacity of 4 entries, initial hash table size $N = 4$.
- Split criterion: allocation of a page in an overflow chain.

Example (Linear hash table, $h_{level}(k)$ shown)

<table>
<thead>
<tr>
<th>level = 0</th>
<th>h1</th>
<th>h0</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>00</td>
<td>32* 44* 36*</td>
</tr>
<tr>
<td>001</td>
<td>01</td>
<td>9* 25* 5*</td>
</tr>
<tr>
<td>010</td>
<td>10</td>
<td>14* 18* 10* 30*</td>
</tr>
<tr>
<td>011</td>
<td>11</td>
<td>31* 35* 7* 11*</td>
</tr>
</tbody>
</table>

hash buckets overflow pages
Linear Hashing: Running Example

Example (Insert record with key k such that $h_0(k) = 43 = 101011_2$)

<table>
<thead>
<tr>
<th>level = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
</tr>
<tr>
<td>000</td>
</tr>
<tr>
<td>001</td>
</tr>
<tr>
<td>010</td>
</tr>
<tr>
<td>011</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

32*			
9*	25*	5*	
14*	18*	10*	30*
31*	35*	7*	11*
44*	36*		

hash buckets overflow pages
Linear Hashing: Running Example

Example (Insert record with key k such that $h_0(k) = 37 = 100101_2$)

Level = 0

h_1	h_0
000 00 | 32
001 01 | 9 25 5 37
010 10 | 14 18 10 30
011 11 | 31 35 7 11 43
100 | 44 36

Hash buckets

Overflow pages
Example (Insert record with key k such that $h_0(k) = 29 = 11101_2$)

```
level = 0

$\begin{array}{c|c}
h_1 & h_0 \\
000 & 00 \\
001 & 01 \\
010 & 10 \\
011 & 11 \\
100 & \\
101 & \\
\end{array}$

$\begin{array}{c|c}
& \text{Next} \\
32 & \\
9 & 25 \\
14 & 18 & 10 & 30 \\
31 & 35 & 7 & 11 \\
44 & 36 & & \\
5 & 37 & 29 & \\
\end{array}$
```
Example (Insert three records with key \(k \) such that \(h_0(k) = 22 = 10110_2 / 66 = 1000010_2 / 34 = 100010_2 \))

(level = 0)

<table>
<thead>
<tr>
<th>(h_1)</th>
<th>(h_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

next
Example (Insert record with key k such that $h_0(k) = 50 = 110010_2$)

Rehashing a bucket requires rehashing its overflow chain, too.
Linear Hashing: Search Procedure

- Procedures operate over hash table bucket (page) address array $bucket[0, \ldots, 2^{level} \cdot N - 1]$.
- Variables $level$, $next$ are hash-table globals, N is constant.

Linear hashing: search

```
Function: hsearch(k)

b ← h_{level}(k);
if b < next then
    /* b has already been split, record for key k */
    /* may be in bucket b or bucket 2^{level} \cdot N + b */
    /* ⇒ rehash */
    b ← h_{level+1}(k);
/* return address of bucket at position b */
return bucket[b];
```

Linear Hashing: Insert Procedure

Linear hashing: insert

Function: \(h_{\text{insert}}(k*) \)

1. \(b \leftarrow h_{\text{level}}(k) \);
2. if \(b < \text{next} \) then
 3. /* rehash */
 \(b \leftarrow h_{\text{level}+1}(k) \);
4. Place \(h(k*) \) in \(\text{bucket}[b] \);
5. if \(\text{overflow}(\text{bucket}[b]) \) then
 6. Allocate new page \(b' \);
 /* Grow hash table by one page */
 7. \(\text{bucket}[2^{\text{level}} \cdot N + \text{next}] \leftarrow \text{addr}(b') \);
 8. ..

- Predicate \(\text{overflow}(\cdot) \) is a tunable parameter: whenever \(\text{overflow}(\text{bucket}[b]) \) returns \(\text{true} \), trigger a split.
Linear Hashing: Insert Procedure (continued)

```
if overflow(···) then
  foreach entry k'* in bucket[next] do
    /* redistribute */
    Place k'* in bucket[h_{level+1}(k')];
  next ← next + 1;
  /* did we split every bucket in the hash? */
  if next > 2^{level} \cdot N - 1 then
    /* hash table size doubled, split from top */
    level ← level + 1;
    next ← 0;
  return;
```

Linear Hashing: Delete Procedure (Sketch)

- Linear hashing deletion essentially behaves as the “inverse” of `hinsert(·):

```plaintext
Linear hashing: delete (sketch)

Function: hdelete(k)

1: /* does record deletion leave last bucket empty? */
2: if empty(bucket[2^level · N + next]) then
3:   Remove page pointed to by bucket[2^level · N + next] from hash table;
4:   next ← next − 1;
5:   if next < 0 then
6:     /* round-robin scheme for deletion */
7:     level ← level − 1;
8:     next ← 2^level · N − 1;
9:   ...

• Possible: replace `empty(·)` by suitable `underflow(·)` predicate.
```