
Towards Real-Time Machine Learning

Andreas Hapfelmeier1, Christian Mertes1, Jana Schmidt1, and
Stefan Kramer2

1 Department of Computer Science, Technische Universität München,
85748 Garching, Germany,

{andreas.hapfelmeier, christian.mertes, jana.schmidt}@in.tum.de,
2 Institute of Computer Science, Johannes Gutenberg-Universität Mainz,

55128 Mainz, Germany,
kramer@informatik.uni-mainz.de

Abstract. Mining data streams has become an important topic within
the last decade, and numerous approaches have addressed various issues
in this domain. However, little work has been devoted to the setting
where high-speed data streams are potentially faster than the underly-
ing learning algorithm, and nevertheless a prediction needs to be given
promptly for each unlabeled instance in the stream. Additionally, a model
has still to be trained on the labeled instances of the stream in paral-
lel. To solve this problem, we propose a framework and controller-based
approach that ensures proper training of a model and a prediction for
each unlabeled instance in the stream. The approach can also be used
for data streams with altering stream speeds. We show that the method
performs well under heavy system load on both synthetic and real-world
data using different learning algorithms. We believe that this type of real-
time machine learning, the synthesis of machine learning and real-time
systems, raises a number of interesting questions for machine learning
research.

Keywords: Data stream mining, assured prediction, real-time systems

1 Introduction

Over the past few years, the amount of collected information has been increasing
extremely, and new challenges are posed to classical machine learning algorithms.
Web applications, social services and sensors capturing the environment with
increasing quality produce a steadily growing mass of data. Next generation
sequencing (NGS) technologies double their sequencing capacity of base pairs
(bp) per dollar every fifth month [1], the “LifeShirt” project [2] monitors the
health status of patients with body sensors, generating 200 MB over 24 h for
one person, and the NASA Earth Observation System (EOS) produces 2.9 TB
data per day [3], to name just a few prominent examples. Such high speed data
streams (DS) can be found in many other areas beyond science as well, like
finance, web applications or telecommunications.



While the mass of data is steadily increasing and data streams constantly
gain in speed, online learning algorithms used to process the data are naturally
limited by their maximal instance processing speed. As the evolution of these
massive data streams is much faster than the improvement of CPU power after
Moore’s law [4], the gap increases between available and processable data. As a
consequence, not all provided instances in a stream can be used by the learning
algorithm and some have to be skipped. This could be especially harmful if the
skipped instances would reveal important insights to the user. To avoid skip-
ping instances and to still enable (potential) insights, currently not processable
instances could, in principle, be externally stored for later processing. However,
as the data stream speed is higher than the processing speed, the algorithm is
constantly challenged by the amount of data, and the amount of stored instances
is constantly increasing. Besides memory usage, the time span from the arrival
of the instances to their processing (response time) is steadily increasing as well.
This processing delay can result in outdated information, and important events
might be missed. To address these issues, this paper introduces PAFAS (Pre-
diction Assured Framework for Arbitrarily Fast Data Streams), a framework to
handle high-speed data streams that potentially go to or beyond the limits of the
processing speed of the online learning algorithm. The contributions of PAFAS
are:

1. All unlabeled instances in the data stream receive a prediction.
2. The prediction is given promptly after the instances’ arrival time.
3. The prediction model is constantly improved (independent of the DS speed).
4. No external instance storage is needed.

The framework can be applied whenever events have to be detected as soon
as possible, and no information is allowed to be missed to detect these events.
We believe that concepts for the embedding of machine learning into real-world
systems are required, taking into account the time it takes to make a prediction
as well as the time it takes to train or refine a model. In this paper, we discuss
one such framework and present evidence from experiments with varying loads.

This paper is organized as follows. First, related work is presented. Then, the
problem setting is presented along with the proposed framework. Subsequently,
the evaluation of the framework is presented in Section 4. The paper closes with
a discussion.

2 Related Work

Data stream mining has developed considerably in the past decade and attracted
many researchers to adopt existing algorithms for the challenging task to process
and reason about instances received at a very high speed [5]. One part addresses
the adaptation of batch algorithms to cope with the data stream setting [6] by,
e.g. incremental batch approaches [7]. To provide a specific environment for ef-
ficient data stream processing, data stream management systems (DSMS) have
been developed. Such systems are adaptations of database management systems



(DBMS) to query continuous, unbounded data streams possibly in combina-
tion with pre-stored, fixed datasets. Two well-known DSMS, AURORA [8] and
STREAM [9], use their own language to query data streams. Both systems also
address the problem of too fast data streams, i.e., when the system is not capa-
ble of processing all of the instances provided by the data stream. They use load
shedding (also implemented in a system environment [10]) to select instances of
the data stream that should be processed. Based on Quality-Of-Service (QoS)
specifications, the system decides which instances are useful for the system to
fetch and which instances can be discarded. The main idea is to select instances
that will most probably lead to a good prediction. Another possibility to cope
with too fast data streams is sampling. Sampling is a technique to represent a
larger dataset by a smaller selected subset. It was frequently applied to reduce
the overall processing time of data mining algorithms and to efficiently scan large
datasets [11]. In the simplest case it selects a random subset from the whole data
set as an input for the learner. Frequently, the purpose of this is to estimate the
quality of the result [12]. Another possibility to cope with very fast data streams
is to adapt the mining technique corresponding to the currently available re-
sources. Such methods are summarized under the heading of granularity-based
techniques. While load shedding and sampling change the input granularity of
the data mining method, the output of the data mining method can also be re-
duced, e.g. the number of rules or clusters [13]. Then, the model that is used for
classification is smaller and thus also more time-efficient, i.e., more instances can
be processed in less time. This method termed Algorithm Output Granularity
(AOG) can also be applied on various data mining schemes like clustering, clas-
sification or frequent set mining. Last, anytime algorithms are also often used
for altering data stream speeds, as they can be interrupted anytime to return
an intermediate result [14]. The more time available, the better the result has
to be. Most of the presented approaches make use of a resource monitor (also
called controller) that decides how an instance will be processed, depending on
the current data stream speed. We will also make use of this successful concept
in our work. However, none of these methods addresses the case when there are
labeled and unlabeled instances in the data stream and the user expects a clas-
sification for each unlabeled instance. If one applies load shedding or sampling
on such a data stream, instances may drop out of the process and no prediction
would be made for them. If AOG was used in such a case, then still the data
stream may be too fast for even the smallest model. This would either lead to
a memory exception or long response times for such instances. Anytime algo-
rithms need an initialization period for each instance and consequently, they can
be overwhelmed by fast data streams as well. Therefore, we propose an approach
that guarantees prompt prediction of each unlabeled instance by adaptation to
data streams of varying speeds.



3 Prediction Assured Framework for Arbitrarily Fast
Data Streams (PAFAS)

This section first introduces the problem setting and then specifies PAFAS, which
is proposed to tackle the problem.

3.1 Problem Setting

A data stream DS = {i1, . . . , ij , . . . , i∞} is a possibly unbounded sequence of
instances i ∈ Rk observed in increasing order of index j, where each instance is
observed at a specific time point tj . Each instance ij =< xj1, . . . , xjk−1, yj >
consists of attributes with known values (xjk) and an attribute of interest (yi,
the target variable) with a possibly missing value. Depending on the attribute
of interest, we distinguish between two types of data streams. In the first data
stream type, the value for the attribute of interest is given (DSL / labeled data
stream) and in the second, the attribute value is missing (DSU / unlabeled data
stream). As the value of yj in DSU is important in the application domain, a
model M is trained on DSL, where yj is known for each instance. Model M is
then applied on DSU to make a prediction ŷj for yj . For simplicity, model and
learning algorithm are merged into one entity in our framework, incorporating
both the representation of the model (function) and learning / adaptation func-
tionality. Each data stream has a specific speed vDS , defined as the number of
instances observed in the streams in a specific time interval. Furthermore, each
model M has a specific instance processing speed vM , defined as the number of
instances processable in a specific time interval. For high speed data streams,
vL >> vM and vU >> vM . Consequently, not all instances ij ∈ DSL and
ij ∈ DSU can be processed by M . As the prediction of ŷj for all ij ∈ DSU is
essential in the application domain, the task is to predict ŷj as soon as possible
after receiving instance ij from DSU . This prediction has to be made as good
as possible for all ij ∈ DSU . Instances without a ŷj prediction are not allowed
in our envisaged usage.

3.2 Approach Specification

To address the given problem setting, we integrate a so-called controller into the
online process (cf. Figure 1, center). The controller fetches the instances over a
specific time interval tf , which we refer to as fetching interval, from the data
streams DSL and DSU . These instances are defined as X ′tr for the instances
fetched from the data stream DSL and X ′pr for the instances fetched from DSU

over the time interval tf . After each fetching interval, the controller uses the
instances in X ′tr to further train the model M and the instances in X ′pr to receive
predictions from M . Meanwhile, new instances are collected in the new fetching
interval. That way, the controller works as a buffer between the data streams,
where the instances can arrive in altering time intervals, and M , where the
instances are processed at a constant speed. Furthermore, the controller assures
that M is only used by the instances in a time interval of tf and that the model
is then available for the next instances in X ′tr and X ′pr from the next fetching



Fig. 1. Illustration of the problem setting. Two data streams DSU and DSL provide
instances with speed vL and vU . The task is to predict ŷi as soon as possible for each
instance from DSU using model M . To handle very fast data streams, the controller
manages the instance processing.

interval. As it is mandatory that all instances ij ∈ X ′pr receive a value ŷ, the
controller prefers these instances and passes them before the instances in X ′tr to
the model M . In the case where the data stream speed is constantly higher than
the instance processing speed of the model (i.e. vU > vM ), a state is reached
where not all instances from DSU would receive a prediction. Additionally, the
model M would not be further improved by the instances from DSL, because no
time is left to process these instances. That is why the time interval tf is divided
into tpr and ttr (tpr + ttr = tf ). tpr is the maximal time given to the instances
in X ′pr to receive a prediction ŷ from the model M , and ttr is the maximal time
given to the instances in X ′tr to improve the model M . As DSL and DSU can
have different speeds, the amount of instances in X ′tr and X ′pr can be highly
unequal. An equal share of the time would not be suitable. Consequently, tpr is
calculated as the proportional number of instances in X ′pr over all instances in
the controller. Therefore, the time given for the instances in X ′pr is

tpr =
X ′pr

X ′pr + X ′tr
.

However, as vM is normally faster for the prediction task than for the training
task, there may be the case where the time for the prediction is not fully required,
and a prediction for all instances in X ′pr is given in t′pr (t′pr ≤ tpr). Then, the
training of the model starts immediately, which gives the instances in X ′tr the
following maximal time for training:

ttr = tf − t′pr.

Such a flexible approach guarantees that the given time is used for both: training
and prediction. In the case when vU (vL) is higher than vM , the controller is



aware that not all instances in X ′pr (X ′tr) can be processed by M in tpr (ttr).
Therefore, only a specific part Xpr ⊆ X ′pr (Xtr ⊆ X ′tr) can be processed in

tpr (ttr), while the rest Xpr ⊆ X ′pr (Xtr ⊆ X ′tr) is not provided to the model

by the controller. While the controller can discard all instances from Xtr, it is
mandatory that also all instances from Xpr receive a value for the attribute of
interest y. As there is no time left in tpr, the model M cannot be applied. To
guarantee a prediction, the controller assigns the average value of the attribute
of interest over all processed instances ei ∈ DSL (y) to all instances in Xpr.

4 Experimental Evaluation

This section evaluates the proposed framework on three different data streams,
using three different learning algorithms. First, the data stream generation is
explained. Second, two alternative frameworks are described, which are used for
comparison in the following evaluation. Third, the experimental setup as well as
the used learning algorithms are explained. At last, the results are shown and
discussed.

4.1 Data Streams

Our approach is evaluated on three different data streams. To simulate the high
speed data streams, 1 GB of RAM is filled with instances randomly chosen
from each dataset (artificial: 2DimTree[15], real-world: Airline3, Census4) prior
to the evaluation process. The data streams DSL and DSU are then created by
randomly choosing instances from the main memory. Prior storage and fetching
of the instances from the main memory is necessary to emulate data streams of
sufficiently high speed.

4.2 Alternative Frameworks

There are two straightforward frameworks to handle high speed data streams
with a speed higher than the instance processing speed of the model:
The running-sushi framework (RSF), processes only a random subset of the data
stream instances (sampling). It is based on the idea to fetch an instance from
the data stream DS as soon as the model M is ready to process a new instance.
Metaphorically, the data stream can be compared to a conveyor belt in a running
sushi bar. There, you always take the next available sushi off the conveyor belt
and eat it. As soon as you have finished one piece, you can take the next one.
Transferring this idea to the given problem setting, the sushi belt corresponds
to the data stream and each single sushi is an instance from DSU or DSL. The
guest is the model M that processes the instances. The data stream passes the
model and each time the model is not processing or has finished processing an
instance, the current instance in the stream is selected by the model. Labeled
instances are used for training and unlabeled instances receive a prediction from

3 http://stat-computing.org/dataexpo/2009/
4 http://archive.ics.uci.edu/ml/datasets/US+Census+Data+%281990%29



the model. As long as the model is processing an instance, all arriving labeled
and unlabeled instances from the stream pass.
The queue framework (QF) uses an external storage to process all instances by
the model M . Each unlabeled instance receives a prediction, and each labeled in-
stance is used to improve the model quality. Instances that cannot be processed
by the model immediately are stored in a queue (FIFO principle) for later pro-
cessing when the resources (time) are available. If the speed of the data stream
exceeds the processing speed of the model, the queue extends, and if the data
stream speed decreases again, the queue shrinks.

4.3 Experimental Setup

Our framework is compared to the alternative frameworks on all three data
streams. To show the flexibility and usability to integrate all kinds of incre-
mental learning algorithms, all three approaches were used with three different
incremental learning algorithms: FIMT [16], IMTI-RD [17], IMTI-RA [17]5. The
whole approach as well as the algorithms is written in JAVA. While the FIMT al-
gorithm is a reimplementation based on the published information, the IMTI-RD
and IMTI-RA algorithms are original implementations provided by the authors.
All three incremental linear model trees were run with default parameters, pro-
posed in the original publication or implementation. All runs were performed on
an AMD processor with 2.6 GHz and each JAVA process was given 3800 MB
of RAM. The following results are the averaged means of 5 runs using different
instance orders in the streams. To motivate our approach, the maximal instance
processing speed of each learning algorithm is presented first. Then, each frame-
work is tested using each learning algorithm on all three data streams. The data
stream speeds are both set to 1,700,000 instances per second (vL = 1, 700, 000
instances per second (ips) and vU = 1, 700, 000 ips). For PAFAS, tf is set to
50 milliseconds. The applicability of the three different frameworks on the given
high speed data streams is evaluated based on the number of processed instances,
and an analysis of the response time is given. Finally, the prediction accuracy of
each framework is compared.

4.4 Results

To test the maximal genuine instance processing speed of each learning algo-
rithm, instances are loaded into the main memory and directly fed to the learning
algorithm without any processing system in between. The number of instances
that can be used for training (or processed for the prediction respectively) in
a second is measured. This can be be interpreted as the maximal data stream
speeds (vL and vU ) that can be processed by the algorithm (shown in Table 1).
It can be observed that the processing speed of the labeled and unlabeled data
streams are very different. Instances from the unlabeled stream (DSU ) can be
processed much faster compared to instances from the labeled stream (DSL).

5 The frameworks were also tested with a multilayer perceptron neural network, which
let to similar results. Due to space limitations, we omitted them here.



Table 1. Maximal data stream processing speed (middle) and the maximal number of
collected DS instances ij until a memory exception takes place for QF (right)

Data stream Algorithm Max. vL Max. vU Max. ij using QF (mio)

2DimTree

FIMT 434,852 2,781,893 336
IMTI-RA 29,551 2,858,142 386
IMTI-RD 18,612 4,370,217 402

Airline

FIMT 60,909 358,009 253
IMTI-RA 579 1,424,470 351
IMTI-RD 45 2,565,789 353

Census

FIMT 52,241 319,892 186
IMTI-RA 113 801,056 271
IMTI-RD 5 1,678,321 270

This can be explained by the fact that the learning algorithm is only used on the
unlabeled instances Xpr for predictions, which is a relatively fast process. In con-
trast, the labeled instances Xtr are used to train, i.e., to improve the model. This
process can be, depending on model complexity and data dimensionality, very
time-consuming. This becomes evident when comparing the processing speed of
the simpler and faster FIMT algorithm to the more complex ones (IMTI-RA and
IMTI-RD) over increasing stream complexity (2DimTree to airline to census).
This culminates in only 5 instances per second for the IMTI-RD algorithm on the
census data stream. However, in real-world applications, the learning algorithms
are further embedded in a framework where the instances are fetched from the
stream and delivered to them. This framework also consumes CPU time and
slows down the algorithm processing speed further.
Memory problems arise for QF after a specific number of instances were ob-
served. When using a data stream of 1,700,000 instances per second, which is
clearly above every vL, one can expect that QF will run out of memory sooner
or later. This depends on the gap between vM and vU +vL and the storage size
for the data stream instances. The number of instances that can be collected
from the data stream until a memory exception arises is shown in Table 1 for
our setting. These numbers suggest that using QF for high-speed data streams
in real-world applications is not feasible as only few instances can be processed
before a system crash. Contrary to QF, RSF and PAFAS can process instances
until the framework (including the model) becomes too large for the main mem-
ory. As this time span is out of scope, the runs were stopped after fetching 4,294
billion instances (from both streams).

Processed Instances Although an infinite number of instances could be pro-
cessed by RSF and PAFAS, it is still important to process as many instances as
possible from the data stream. The more instances are included in the training
process, the more accurate the predictions should be. And of course in the pre-
sented setting every unlabeled instance should also receive a prediction. Thus,
the first evaluation addresses the number of processed instances for each frame-
work. QF is left out due to its limited usability. Table 2 shows the number of



Table 2. Performance after 4.294 billion instances from the data stream

2DimTree

Algorithm Framework #Trained #Pred. by model #Pred. with mean #Missed

FIMT
PAFAS 885,935 110,758,335 2,036,241,665 0
RSF 9,368,131 9,377,314 0 2,137,622,686

IMTI-RA
PAFAS 622,486 2,195,176 2,144,804,824 0
RSF 6,852,348 6,859,463 0 2,140,140,537

IMTI-RD
PAFAS 633,274 104,145,808 2,042,854,192 0
RSF 6,101,393 6,105,633 0 2,140,894,367

Airline

Algorithm Framework #Trained #Pred. by model #Pred. with mean #Missed

FIMT
PAFAS 456,736 57,666,323 2,089,333,677 0
RSF 7,404,400 7,417,562 0 2,139,582,438

IMTI-RA
PAFAS 382,832 75,899,407 2,071,100,593 0
RSF 1,228,088 1,230,360 0 2,145,769,640

IMTI-RD
PAFAS 45,780 115,547 2,146,884,452 0
RSF 37,837 95,054 0 2,146,904,946

Census

Algorithm Framework #Trained #Pred. by model #Pred. with mean #Missed

FIMT
PAFAS 404,284 28,300,148 2,118,699,852 0
RSF 7,012,848 7,018,232 0 2,139,981,768

IMTI-RA
PAFAS 208,164 3,109,092 2,143,890,908 0
RSF 193,335 209,721 0 2,146,790,279

IMTI-RD
PAFAS 5,638 164,851 2,146,835,149 0
RSF 5,432 6,052 0 2,146,993,948

processed instances for each framework after the forced end of each data stream.
The number of processed instances for training and testing using RSF is nearly
equal. This is a consequence of the equal data stream speeds and for that of the
equal probabilities to fetch a labeled or unlabeled instance. In contrast, PAFAS
processes many more prediction instances than training instances. This is done
by constantly collecting the instances over the time period tf and by processing
the prediction instances first. The prediction instances are thus preferred over
the training instances. More instances are predicted using M , which is reflected
in an improved prediction accuracy. Furthermore, the sum of instances that are
used for training and prediction by the model is larger for PAFAS than for RSF.
As training time is very costly, RSF sacrifices many prediction instances in favor
of one training instance. Therefore, the sum of processed instances is much lower
than in the PAFAS setting.

Response Time The next quality criterion is the response time for each frame-
work, i.e. how long it takes for a new unlabeled instance to receive a prediction
after appearing in the data stream. The response time of RSF is only dependent
on the prediction/training time of the model, e.g., a constant response time is ob-
served. In contrast, the QF response time increases with the number of instances
that are stored in the queue until their prediction. In fact, a linear increase of the



response time can be observed, because a linearly increasing number of instances
must be processed before each new instance. This is done in constant time for
each instance. Due to lack of space this is not illustrated in this paper. Last,
PAFAS guarantees a response time not larger than 2∗ tf (adjustable parameter)
for each unlabeled instance. First, the instances are loaded into the controller,
which lasts tf , and then they are processed in the next time frame, which also
lasts tf . If an instance cannot receive a prediction by the model during this time,
the mean target value is assigned to that instance. In both cases, the instance
receives a prediction after at most 2 ∗ tf .

Prediction Accuracy The last quality criterion adresses the prediction accu-
racy of the instances that have been delivered from the data stream for each
framework. However, in QF and RSF not every unlabeled instance has yet re-

(a) 2DimTree data stream

(b) Airline data stream

(c) Census data stream

Fig. 2. MAE development for all approaches on each data stream.



ceived a prediction, because instances are stuck in the queue (QF) or have been
skipped (RSF). In the application domain, leaving out predictions or receiving a
delayed prediction may be harmful. Therefore, a penalty is imposed for each in-
stance that is stuck in the queue or was skipped. In both cases, the penalty is set
to the average error when using y as prediction. This is equal to the non-model
prediction made by PAFAS and corresponds to the minimal error that can be
made without using a specific model. Of course, the penalty can be adapted to
the severity of not predicting an instance, which can then lead to an even worse
score. Figure 2 illustrates the MAE for the predictions that have been received
from the stream. PAFAS achieves a better MAE in 6 out of 9 cases, because
more predictions are made with the model, although it was trained with fewer
instances. This may nevertheless be enough for a useful prediction. The cases
with an higher error often occur with IMTI-RD on more complex datasets, which
could be the result of a temporary overly strong emphasis on the prediction.

5 Conclusion and Future Work

This paper proposes a framework to handle high-speed data streams consisting
of labeled and unlabeled instances. It assures that each unlabeled instance re-
ceives a prediction in a bounded time interval, while the model is still constantly
improved by the labeled instances. Its applicability to three learning algorithms
on three data streams has been shown and its performance has been compared
to two other approaches. The proposed framework focuses on a single-core im-
plementation yet, as it is a good starting point to develop the approach towards
more complex settings. Three interesting adaptations of PAFAS could be ad-
dressed in the future. First, the framework could be extended to multicore and
distributed systems learning several models. Second, using the advantages of
anytime learners, the available training and prediction time could be used more
efficiently. For the training instances, sampling variants could be used to choose
the most useful ones. On the prediction side, a granularity approach that dynam-
ically decides which depth of the model should be used for the prediction could
be tested. There, using sampling is not appropriate, as each instance has to re-
ceive a prediction. Third, the time frames could be partitioned into training and
prediction times dynamically, as it could be tuned corresponding to the model
quality. To obtain a good-quality model, as many instances from X ′tr should be
provided, which implies that ttr should be as large as possible: ttr → tf . On
the other hand, the user is of course interested in obtaining predictions by the
model M for instances X ′pr, which implies that tpr should be as large as possi-
ble: tpr → tf . Therefore, it would be interesting to think about the integration
of a model-quality dependent time-split decision, possibly using reinforcement
learning.

References

1. Stein, L.: The case for cloud computing in genome informatics. Genome Biology
11 (2010) 207



2. Cárdenas, A., Pon, R., Cameron, R.: Management of Streaming Body Sensor Data
for Medical Information Systems. In: Proceedings of the International Conference
on Mathematics and Engineering Techniques in Medicine and Biological Scienes.
(2003) 186–191

3. Chan, D., Krupp, B., Wanchoo, L.: Earth observation system. Technical report,
National Aeronautics and Space Administration(NASA) (2010)

4. Moore, G.E.: Cramming more components onto integrated circuits, reprinted from
electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State
Circuits Newsletter 20 (2006) 33–35

5. Gaber, M.M.: Advances in data stream mining. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 2 (2012) 79–85

6. Domingos, P., Hulten, G.: A general method for scaling up machine learning
algorithms and its application to clustering. In: In Proceedings of the Eighteenth
International Conference on Machine Learning, Morgan Kaufmann (2001) 106–113

7. Wang, F., Yuan, C., Xu, X., van Beek, P.: Supervised and semi-supervised online
boosting tree for industrial machine vision application. In: Proceedings of the Fifth
International Workshop on Knowledge Discovery from Sensor Data. SensorKDD
’11, ACM (2011) 43–51

8. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., Zdonik, S.: Aurora: A new model and architecture for data
stream management. The VLDB Journal 12 (2003) 120–139

9. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R.,
Srivastava, U., Widom, J.: Stream: The stanford data stream management system.
Technical Report 2004-20, Stanford InfoLab (2004)

10. Chi, Y., Wang, H., Yu, P.S.: Loadstar: Load shedding in data stream mining. In:
In Proceedings of the 31st International Conference on Very Large Data Bases
(VLDB 2005). (2005) 1302–1305

11. Toivonen, H.: Sampling large databases for association rules. In: Proceedings of
the 22th International Conference on Very Large Data Bases (VLDB 1996). (1996)
134–145

12. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the
Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’00, ACM (2000) 71–80

13. Gaber, M.: Data stream mining using granularity-based approach. In Abraham,
A., Hassanien, A.E., de Leon F. de Carvalho, A., Snel, V., eds.: Foundations of
Computational Intelligence. Volume 206 of Studies in Computational Intelligence.
Springer Berlin / Heidelberg (2009) 47–66

14. Shieh, J., Keogh, E.: Polishing the right apple: Anytime classification also benefits
data streams with constant arrival times. In: Proceedings of the 2010 IEEE Inter-
national Conference on Data Mining. ICDM ’10, IEEE Computer Society (2010)
461–470

15. Vens, C., Blockeel, H.: A simple regression based heuristic for learning model trees.
Intelligent Data Analysis 10 (2006) 215–236

16. Ikonomovska, E., Gama, J.: Learning model trees from data streams. In Boulicaut,
J.F., Berthold, M., Horvth, T., eds.: Proceedings of the 11th International Discov-
ery Science Conference (DS 2008). Volume 5255 of Lecture Notes in Computer
Science., Springer (2008) 52–63

17. Potts, D., Sammut, C.: Incremental learning of linear model trees. Machine Learn-
ing 61 (2005) 5–48


