
Discovery and Application of Functional Dependencies
in Conjunctive Query Mining

Bart Goethals1, Dominique Laurent2, Wim Le Page1

1 University of Antwerp, Dept of Mathematics and Computer Science B-2020 Antwerp
2 ETIS-CNRS-ENSEA-Université de Cergy-Pontoise F-95000 Cergy-Pontoise

Abstract. We present an algorithm for mining frequent queries in arbitrary re-
lational databases, over which functional dependencies are assumed. Building
upon previous results, we restrict to the simple, but appealing subclass of simple
conjunctive queries. The proposed algorithm makes use of the functional depen-
dencies of the database to optimise the generation of queries and prune redundant
queries. Furthermore, our algorithm is capable of detecting previously unknown
functional dependencies that hold on the database relations as well as on joins
of relations. These detected dependencies are subsequently used to prune redun-
dant queries. We propose an efficient database-oriented implementation of our
algorithm using SQL, and provide several promising experimental results.

1 Introduction

The discovery of recurring patterns in databases is one of the main topics in data min-
ing and many efficient solutions have been developed for different classes of patterns
and data collections. Almost all techniques, however, work on so called transaction
databases [1]. Not only for itemsets, but also in the case of trees [20] and graphs [12,
15, 19], the database consists of a collection of transactions, and a frequent pattern is
discovered if it occurs in enough such transactions. Even in the multi-relational case,
as considered in the WARMR system [4], the database can be seen as a collection of
transactions in which each transaction consists of a small relational database. A query
is then called frequent if it gives a non-empty answer in enough of such databases.

Obviously, many relational databases are not suited to be converted into such a
transactional format and even if this would be possible, a lot of information implicitly
encoded in the relational model would be lost after conversion. Recently, we have con-
sidered association rule mining on arbitrary relational databases by combining pairs of
queries which could reveal interesting properties in the database [8, 13]. Intuitively, we
pose two queries on the database such that one query is more specific than the other
(w.r.t. query containment). Then, if the number of tuples in the output of both queries is
almost the same, a potentially interesting discovery is revealed.

To illustrate, consider the well known Internet Movie Database [11] containing al-
most all possible information about movies, actors and everything related to that, and
consider the following queries: first, we ask for all actors that have starred in a movie of
the genre ‘drama’; then, we ask for all actors that have starred in a movie of the genre
‘drama’, but that also starred in a (possibly different) movie of the genre ‘comedy’.

2

Now suppose the answer to the first query consists of 1000 actors, and the answer to the
second query consists of 900 actors. Obviously, these answers do not necessarily reveal
any significant insights on themselves, but when combined, it reveals the potentially
interesting pattern that actors starring in ‘drama’ movies typically (with a probability
of 90%) also star in a ‘comedy’ movie. Of course, this pattern could also have been
found by first preprocessing the database, and creating a transaction for each actor con-
taining the set of all genres of movies he or she appeared in. Similarly, a pattern like:
77% of the movies starring Ben Affleck, also star Matt Damon, could be found by pos-
ing the query asking for all movies starring Ben Affleck, and the query asking for all
movies starring both Ben Affleck and Matt Damon. Again, this could also be found
using frequent set mining methods, but this time, the database should have been dif-
ferently preprocessed in order to find this pattern. Furthermore, it is even impossible to
preprocess the database only once in such a way that the above two patterns would be
found by frequent set mining, as they are counting different types of transactions: actors
in the first example and movies in the second example.

Also truly relational patterns can be found which can not be found using typical
set mining techniques, such as 80% of all movie directors that have ever been an actor
in some movie, also star in at least one of the movies they directed. This is expressed
by two queries of which one asks for all movie directors that have ever acted, and the
second one asks for all movie directors that have ever acted in one of their own movies.

The Conqueror algorithm recently developed by Goethals et al. [8] has shown to dis-
cover interesting association rules over a simple, but appealing subclass of conjunctive
queries, called simple conjunctive queries. Furthermore, the algorithm had an efficient
database-oriented implementation in SQL. One challenge that remained to be solved in
this approach, was the huge number of generated patterns. Part of the volume is inher-
ently due to the relational setting, but a substantial part, however, is due to redundancies
induced by dependencies embedded in the data.

Jen et al. [13], studied the problem of mining all frequent queries from a single
relational table. They considered projection-selection queries, and assumed that the ta-
ble to be mined satisfies a set of functional dependencies. A pre-ordering over queries
was defined, and shown to be anti-monotonic towards the support measure. Moreover,
this pre-ordering induces an equivalence relation and two equivalent queries are shown
to have the same support. Therefore, one computation per equivalence class allows to
know the support of all queries in that class. In [14], this work has been generalised to
several tables in the case where the database operates over a star schema. The challenge
however remains to generalise the theory to arbitrary relational databases.

Clearly, the combination of the approaches in [13] and [8] would resolve the issues
posed, i.e., mining non redundant simple conjunctive queries (thus including arbitrary
joins), given a collection of functional dependencies over the relations of an arbitrary
relational database. This is one major contribution of this paper.

Moreover, combining these techniques also results in new opportunities. That is,
next to the given functional dependencies, we introduce a novel technique to discover
previously unknown functional dependencies, and immediately exploit them for reduc-
ing the number of frequent queries in the output. Furthermore, we do so not only for
the relations of the database, but also for any join of relations. This is the second con-

3

tribution of this paper, and several experiments clearly show the benefits of this ap-
proach, thus making the discovery of simple conjunctive queries a feasible and attrac-
tive method towards the exploration of arbitrary relational databases.

The paper is organised as follows: In Section 2, we recall the basic concepts and
definitions used in this work and we briefly review from [13] how functional dependen-
cies are used to compare queries. We present our algorithm Conqueror+ in Section 3,
combining the two approaches [8, 13], and in Section 4, we report experiments, showing
that Conqueror+ clearly outperforms Conqueror. We conclude in Section 6.

2 Formal Model

2.1 Background

We consider a fixed attribute setU and a relational database schemaD = {R1, . . . , Rn}
over U in which, for i = 1, . . . , n, Ri is a relation name associated with a subset of U ,
called the schema ofRi and denoted by sch(Ri). Without loss of generality, we assume
that, for all distinct i and j in {1, . . . , n}, sch(Ri)∩sch(Rj) = ∅. In order to make this
assumption explicit, for all i in {1, . . . , n}, every A in sch(Ri) is referred to as Ri.A.

We also assume that we are given functional dependencies over D. More precisely,
each Ri is associated with a set of functional dependencies over sch(Ri), denoted by
FDi, and the set of all functional dependencies defined in D is denoted by FD.

As in [8], the queries of interest in our approach, are conjunctive projection-selection-
join queries whose joins are expressed using a conjunction of selection conditions of
the form Ri.A = Rj .A

′. We note that by doing so, all possible equi-joins can be con-
sidered, which would not the case using the universal relation associated to the given
database. Moreover, we recall from [8] that such a conjunctive condition F induces a
partition blocks(F) of U , where every block β of blocks(F) is a maximal set of at-
tributes such that for all Ri.A and Rj .A′ in β, Ri.A = Rj .A

′ is a consequence of F .
In such a case, we say that Ri and Rj are connected through F .

Definition 1 Denoting by R the cartesian product R1 × . . . × Rn, let Q = πXσFR
where F =on(Q) ∧ σ(Q), such that on(Q) and σ(Q) are respectively conjunctions of
selection conditions of the form Ri.A = Rj .A

′ and Rk.A = a, where i, j and k are in
{1, . . . , n} and a is in dom(A). Q = πXσFR is said to be a simple conjunctive query
if all relation names occurring in X or in σ(Q) are connected through on(Q).

Given a simple conjunctive query Q = πXσFR, the set X is denoted by π(Q) and
the tuple defined by the conjunctive selection condition σ(Q) is denoted by Qσ .

We call Q a join query if σ(Q) is the empty condition and if π(Q) is the set of all
attributes of all relation names occurring in on(Q). Given a simple conjunctive query
Q, we denote by J(Q) the join query such that on(J(Q)) =on(Q).

To simplify notation, given a simple conjunctive query Q, the corresponding partition
of U , blocks(on(Q)) is simply denoted by blocks(Q). We emphasise that, according to
Definition 1, considering simple conjunctive queries avoids computing cartesian prod-
ucts. We illustrate this definition below.

4

Example 1. Let us consider a database schema D consisting of two relation names R1

and R2 with the following schemas: sch(R1) = {A,B} and sch(R2) = {C,D,E}.
According to Definition 1,R denotes the cartesian productR1×R2. Since sch(R1)∩

sch(R2) is clearly empty, in this example and in the forthcoming examples dealing with
D, we do not prefix attributes with relation names. For example, R1.A is denoted by A.

The query Q = πADσ(A=B)∧(E=e)R is not a simple conjunctive query because R1

and R2 are not connected through the condition A = B. Computing the answer to this
query requires to consider explicitly the cartesian product R1 ×R2.

On the other hand, Q1 = πADσ(A=C)∧(E=e)R is a simple conjunctive query such
that on(Q1) = (A = C), π(Q1) = AD, σ(Q1) = (E = e) and Qσ = e. Moreover,
J(Q1) = πABCDEσ(A=C)R, and blocks(Q1) contains four blocks, namely: {A,C},
{B}, {D} and {E}. In this case, computing the answer to Q1 does not require to
consider the cartesian product R1×R2, since R1 and R2 are joined through A = C. �

We now define as in [8] the support of a query, and when a query is said to be frequent.

Definition 2 Given an instance I of D and a simple conjunctive query Q, the answer
to Q in I is denoted by Q(I) and is seen as a set in which no duplicates are allowed.

The support of Q in I, denoted supportI(Q) or simply support(Q), is the cardi-
nality of the answer to Q in I. Given a minimum support threshold minsup, Q is said
to be frequent if support(Q) > minsup.

To end the preliminaries, we mention the strong relationship between support and func-
tional dependency, as stated by the following proposition whose easy proof is omitted.

Proposition 1 Let T be a relational table over the attribute set sch(T) and let X and
X ′ be subsets of sch(T). T satisfies X → X ′ if and only if support(πXX′T) =
support(πXT).

In the context of Example 1, for Q = πADσ(A=C)R and Q′ = πAσ(A=C)R, con-
sidering an instance I of D for which support(Q) = support(Q′) indicates that
σ(A=C)R(I) satisfies the functional dependency A → D. Consequently, for every
conjunctive selection condition S, the queries QS = πADσ(A=C)∧SR and Q′

S =
πAσ(A=C)∧SR also have the same support. Thus, computing the support of Q′

S is re-
dundant, assuming that the support of QS is known.

We recall that one of the main contributions of this paper is to discover functional
dependencies in order to avoid computing unnecessary supports.

2.2 Query Comparison

Inspired by [13], we compare queries based on functional dependencies.

Definition 3 Let Q1 = πX1σF1R and Q2 = πX2σF2R be two simple conjunctive
queries. Denoting by Yi the schema of Qσi , for i = 1, 2, Q1 � Q2 holds if

1. on(Q1) ⊆on(Q2),
2. J(Q2)(I) satisfies X1Y2 → X2 and Y2 → Y1, and
3. the tuple Qσ1Q

σ
2 is in πY1Y2

J(Q2)(I).

5

Example 2. In the context of Example 1, assume that FD1 = ∅ and FD2 = {C →
D,E → D}, and let Q1 = πADσ(A=C)∧(E=e)R and Q2 = πCσ(A=C)∧(D=d)R.

We have on(Q1) =on(Q2) and J(Q1) = J(Q2) = πABCDEσ(A=C)R. Then, if
I is an instance of D, J(Q2)(I) satisfies FD. Moreover, due to the equality defining
on(Q2), J(Q2)(I) also satisfies A → C and C → A. Therefore, J(Q2)(I) satisfies
CE → AD and E → D, and so, if de ∈ πDEJ(Q2)(I), by Definition 3, Q2 � Q1. �

It can be seen from [13] that � is a pre-ordering and that the support of queries is anti-
monotonic with respect to �. In other words, for all Q1 and Q2 such that Q1 � Q2,
we have support(Q2) ≤ support(Q1). Anti-monotonicity is used in our algorithms to
prune infrequent queries, in much the same way as in Apriori [1].

Moreover, the pre-ordering � induces an equivalence relation, denoted by ∼, de-
fined as follows: given two simple conjunctive queries Q1 and Q2, Q1 ∼ Q2 holds if
Q1 � Q2 and Q2 � Q1. As a consequence of anti-monotonicity, if Q1 ∼ Q2 holds
then support(Q1) = support(Q2). Thus, only one computation per equivalence class
modulo ∼ allows to know the support of all queries in that class.

In order to characterize equivalence classes modulo∼, we denote byX+ the closure
of a relation schema X with respect to a given set of functional dependencies FD.
Then, based on [13], it can be seen that for Q1 = πX1

σF1
R and Q2 = πX2

σF2
R,

Q1 ∼ Q2 holds if and only if on(Q1) =on(Q2), (X1Y1)
+ = (X2Y2)

+, Y +
1 = Y +

2 and
Qσ1Q

σ
2 ∈ πY1Y2

J(Q1)(I).
Now, given a query Q, the representative of the equivalence class of Q considered

in this paper is the query Q+, such that π(Q+) = π(Q)+, on(Q+) =on(Q) and σ(Q+)
is the selection condition corresponding to the super tuple of Qσ , denoted by (Qσ)+,
defined over sch(Qσ)+, and that belongs to πsch(Qσ)+J(Q)(I).

Moreover, if π(Q) ⊆ sch(Qσ) then the support of Q is 1, which is meant to be less
than the minimum support threshold. Therefore, the queries Q of interest are such that

π(Q) = π(Q)+, sch(Qσ) = sch(Qσ)+, and sch(Qσ) ⊂ π(Q).

In what follows, such queries are said to be closed queries and the closed query equiv-
alent to a given query Q is denoted by Q+.

It is important to notice that, considering only such queries in our algorithms, re-
duces the size of the output set of frequent queries.

Example 3. Referring back to the queries Q1 and Q2 of Example 2, it is easy to see
that they do not satisfy the restrictions above. For instance, as sch(Qσ1) = E and
π(Q1) = AD, the inclusion sch(Qσ1) ⊂ π(Q1) is not satisfied. It can be seen that
none of these queries are closed, and thus, none of them is considered in our algo-
rithms. But as J(Q1)(I) satisfies C → D, E → D, A → C and C → A, the closed
queries Q+

1 and Q+
2 defined below are processed instead.

Q+
1 = πACDEσ(A=C)∧(E=e)R and Q+

2 = πACDEσ(A=C)∧(E=e)∧(D=d)R.

We also note that Q1 and Q2 would not be considered either in [8], as in there, π(Qi)
(i = 1, 2) is required to contain all attributes from the same block of blocks(Qi)
but no attributes from σ(Qi). Thus, in [8], Q′

1 = πACDσ(A=C)∧(E=e)R and Q′
2 =

πACσ(A=C)∧(E=e)∧(D=d)R are processed instead. As Qi ∼ Q′
i ∼ Q+

i for i = 1, 2,
these queries have the same support. �

6

3 Mining Queries under Functional Dependencies

3.1 Algorithm Conqueror+

In this section, we present our algorithm called Conqueror+ (given as Algorithm 1) for
mining frequent queries. We mention in this respect that frequent simple conjunctive
queries πXσFR are mined in much the same way as the Conqueror algorithm [8], that
is, according to the following steps:

– Join loop: Generate all instantiations of F , without constants, in a breadth-first
manner, using restricted growth to represent partitions [8]. Every partition gives
rise to a join query JQ and functional dependencies of its ancestors are inherited.

– Projection loop: For each generated partition, all projections of the correspond-
ing join query JQ are generated in a breadth-first manner, and their frequency is
tested against the given instance I. During this loop, functional dependencies are
discovered and used to prune the search space.

– Selection loop: For each frequent projection-join query, constant assignments are
added to F in a breadth-first manner, as in Conqueror. Moreover, here again, func-
tional dependencies are used to prune the search space.

As in the Conqueror algorithm, attributes are ordered, so as candidate queries are gen-
erated at most once in the different loops: This ordering is implicit lines 1 and 12 in
Algorithm 1 (the k-th element in the string refers to the k-th attribute according to the
ordering), and is explicitly used line 17 in Algorithm 2 and line 10 in Algorithm 3.

As an important difference with the Conqueror algorithm, a (possibly empty) set
of functional dependencies FD can be specified as input. This set is first used for the
relations of the database instance (line 3 of Algorithm 1) and then augmented during
the projection loop (line 15 of Algorithm 2).

3.2 Join Loop

The generation of joins is done in much the same way as in Conqueror ([8]), by gen-
eration of restricted growth strings [18]. Such a restricted growth string represents a
partition of the attributes, and such a partition maps to a join.

For example, referring back to Example 1, the set U of all attributes occurring in D
is {A, B, C, D, E}. Then, the restricted growth string 12231 represents the condition
(A = E) ∧ (B = C), which corresponds to the partition {{A,E}, {B,C}, {D}}.

As in the Conqueror algorithm, we include a check against the user defined most
specific join, which allows a user to specify the sensible joins in the database (see
line 11, Algorithm 1). By default, however, every possible join of every attribute pair is
considered. A new addition to the join loop is the inheritance of functional dependencies
shown on lines 13-14, and discussed in detail in Section 3.5.

3.3 Projection Loop

Compared to the Conqueror algorithm, one major change in the projection loop is the
fact that the generation of selections is now performed after all projections are gener-
ated (line 22, Algorithm 2) so as to be able to immediately use the discovered functional

7

Algorithm 1 Conqueror+

Input: Database D, Set of functional dependencies FD, Minimum support threshold minsup
Output: Frequent Queries FQ
1: on(Q) := “1” // initial restricted growth string
2: for all Ri in D do
3: FDQ := FDi

4: push(Queue, Ri)
// Join Loop

5: while not Queue is empty do
6: JQ := pop(Queue)
7: if on(JQ) does not represent a cartesian product then
8: FQ := FQ ∪ ProjectionLoop(JQ)
9: children := RestrictedGrowth(on(JQ), m)

10: for all rgs in children do
11: if join defined by rgs is not more specific than the user most specific join then
12: on(JQC) := rgs
13: for all PJQ such that on(JQC) = on(PJQ) ∧ (Ri.A = Rj .A

′) do
14: FDJQC := FDJQC ∪ FDPJQ

15: if on(PJQ) = “1” then
16: FDJQC := FDJQC ∪ {Ri.A→ Rj .A

′, Rj .A
′ → Ri.A}

17: blocks(JQC) := blocks(JQ) where the blocks containing Ri.A and Rj .A
′ are merged

18: push(Queue, JQC)
19: return FQ

dependencies to prune redundant queries. The functional dependency discovery is per-
formed lines 13-16 of Algorithm 2 and is discussed in Section 3.5.

We point out that, according to lines 17-20 of Algorithm 2, candidate projection
queries are generated by removing blocks in blocks(JQ), because attributes in a given
block are mutually dependent. However, it might be the case that removing such a block
does not result in a closed projection schema. This is why, line 9 of Algorithm 2, we
check whether π(PQ) is closed; if not, the projection query is simply queued without
any further processing. This however induces complications in the monotonicity check
line 10 of Algorithm 2, because projections over non closed schemas are not processed.
To cope with this difficulty, if PQ is such that π(PQ) is closed, for every predecessor
PPQ of PQ, the closure of π(PPQ) under FDQ is computed. The check is passed if all
corresponding projection queries are in FPQ.

Also notice that the function blocks(Q) returns the set of connected blocks of a
restricted growth string, i.e., the connected part of the partition blocks(Q). We require
such blocks to form a single connected component, so as to avoid considering cartesian
products, as stated in Definition 1. Clearly, line 7 in Algorithm 1 prunes these queries.

3.4 Selection Loop

In the selection loop of our new algorithm, marked queries are not considered, since
they are redundant (line 23, Algorithm 2). When adding blocks to the selection con-
dition, the closure is taken, ensuring no redundant queries are generated (line 13, Al-

8

Algorithm 2 ProjectionLoop
Input: Conjunctive Query Q
1: if on(Q) = “1” then
2: π(Q) := sch(Ri) // Q is the query Ri

3: else
4: π(Q) := union of blocks(Q)
5: push(Queue, Q)
6: FPQ := ∅
7: while not Queue is empty do
8: PQ := pop(Queue)
9: if π(PQ) is closed then

10: if monotonicty(PQ) then
11: if support(PQ) > minsup then
12: FPQ := FPQ ∪ {PQ}
13: for all PPQ in FPQ such that (6 ∃ PPQ′ ∈ FPQ : π(PQ) ⊂ π(PPQ′) ⊂ π(PPQ)) do
14: if support(PQ) = support(PPQ) then
15: FDQ := FDQ ∪ {π(PQ)→ π(PPQ) \ π(PQ)}
16: mark PQ
17: for all β > lastremoved(PQ) do
18: π(PQC) := π(PQ) with block β removed
19: lastremoved(PQC) = β
20: push(Queue, PQC)
21: FQ := FQ ∪ FPQ
22: for all PQ ∈ FPQ do
23: if PQ is not marked then
24: FQ := FQ ∪ SelectionLoop(PQ)
25: return FQ

gorithm 3). However, closing of these sets of blocks requires to reorder the queue of
candidates in order to use the Apriori-trick. The following example illustrates this point.

Example 4. Considering the attributes A, B and C, along with the functional depen-
dency A → B, the generation of sets for the selection results in the generation-tree
(a) shown below. Indeed, the addition of A entails that B must also be added so as to
consider closed schemas only.

However, because of the monotonicity property, we need to consider B before AB
(since the selection according to B is less restrictive than that according to AB). We
accomplish this by reordering the candidate queue, to ensure B is considered before
AB and BC is considered before ABC, as shown in the generation-tree (b) below. �

(a) ∅
A

www
w

{{ww
w B

��
C

BB
B

 B
BB

AB //

C
��

B

C
��

C

ABC // BC

(b) ∅
B

||
|

~~|||
C
��

A
EEE

E

""E
EE

B

C
��

C AB

C
��

bb

BC ABCoo

9

Moreover, as stated previously, line 14 of Algorithm 3 ensures that σ(Q) is a strict sub-
set of π(Q). However, not all strict subsets of π(PQ) are considered, since we only
have to consider assignments over closed schemas under FDJQ (see line 13, Algo-
rithm 3). Furthermore, in line 14 of Algorithm 3, we make sure that the corresponding
closure has not been processed previously, which can happen since a closed set can be
generated from several non-closed sets.

Then, in lines 7-8 of Algorithm 3, the obtained queries are processed against I
using the same strategy as in [8]. The instantiation of constant values in Algorithm 3 is
performed analogously to Conqueror by performing SQL queries in the database. For
further details, we therefore refer the reader to [8].

Algorithm 3 SelectionLoop
Input: Conjunctive Query Q
1: push(OrderedQueue,Q)
2: while not OrderedQueue is empty do
3: CQ := pop(OrderedQueue)
4: if σ(CQ) = ∅ then
5: toadd := all blocks of π(Q)
6: else if monotonicty(CQ) then
7: if exist frequent constant values for σ(CQ) in I then
8: FQ := FQ ∪ instances of CQ
9: uneq := all blocks of π(Q) /∈ σ(CQ)

10: toadd := all blocks B in uneq > last of σ(CQ)
11: for all Bi ∈ toadd do
12: σ(CQC) := σ(CQ) with Bi added
13: σ(CQC) := closure of σ(CQC) under FDQ

14: if σ(CQC) has not been generated before and σ(CQC) is different than π(Q) then
15: push(OrderedQueue, CQC)
16: return FQ

3.5 Handling and Discovering Functional Dependencies

In this section, we show that, according to our algorithms:

1. A given join query is associated with the set of all functional dependencies satisfied
by its predecessor join queries.

2. Only join and projection queries over closed relation schemas are processed.
3. Considering given functional dependencies along with discovered functional de-

pendencies preserves the above property.

Handling Functional Dependencies. A given join query JQ is associated with a set
of functional dependencies, denoted by FDJQ, and built up in Algorithm 1 as follows.

First, when on(Q) is the restricted growth string 1, every instantiated relation Ri(I)
in the database is pushed in Queue (lines 2 and 5, Algorithm 2), associated with the

10

set FDi (see line 3, Algorithm 1). Then, the restricted growth strings represent a
join condition of the form (Ri.A = Rj .A

′). Denoting by JQ the corresponding join
query, if Ri = Rj then JQ(I) satisfies FDi (since JQ is a selection of Ri) along
with Ri.A → Ri.A

′ and Ri.A′ → Ri.A. Thus, FDJQ is set to FDi ∪ {Ri.A →
Ri.A

′, Ri.A
′ → Ri.A}. Similarly, if Ri 6= Rj , then JQ is a join of Ri and Rj , and so,

JQ(I) satisfies FDi ∪ FDj , as well as Ri.A→ Rj .A
′ and Rj .A′ → Ri.A. Thus, we

set FDJQ = FDi ∪ FDj ∪ {Ri.A→ Rj .A
′, Rj .A

′ → Ri.A} (see lines 13-16 of Al-
gorithm 1). At this stage, π(JQ) is either sch(Ri) (if Ri = Rj) or sch(Ri) ∪ sch(Rj)
(if Ri 6= Rj), and so, π(JQ) is closed under FDJQ.

In the general case, at a given level, the join query JQ is generated from join queries
PJQ in the previous level by setting on(JQ) to on(PJQ) ∧ (Ri.A = Rj .A

′), and
by augmenting π(PJQ) accordingly. Therefore, JQ(I) satisfies the dependencies of
FDPJQ, and thus, FDJQ is set to be the union of all FDPJQ where PJQ allows to
generate JQ (see lines 13-14 of Algorithm 1). Consequently, assuming that π(PJQ)
is closed under FDPJQ clearly entails that π(JQ) is closed under FDJQ.

Thus, for every join query JQ, π(JQ) is closed under those functional dependen-
cies of FDJQ that belong to FD or that are obtained through the connected blocks
of blocks(JQ). Moreover, the discovered functional dependencies in the projection
loop of JQ preserve this property, because these new dependencies are defined with at-
tributes in π(JQ) only. Thus, for every join query JQ, π(JQ) is closed under FDJQ.

Then, the check performed line 9 of Algorithm 2 ensures that only those projection-
join queries PQ such that π(PQ) is closed under FDJQ are considered. We note that
for performing this check, it is enough to make sure that there is no dependencyX → Y
in FDJQ such that X ⊆ π(PQ) and Y 6⊆ π(PQ).

Discovering Functional Dependencies. Functional dependencies, other than those in
FD, are discovered in the projection loop (see lines 13-16 of Algorithm 2) as fol-
lows. At a given level, a projection-join query PQ is generated from the projection-
join queries PPQ of the previous level by removing blocks from π(PPQ). Thus, by
Proposition 1, if support(PQ) = support(PPQ) (see line 14 of Algorithm 2), JQ(I)
satisfies π(PQ) → π(PPQ) \ π(PQ). The dependency is thus added to FDJQ and
PQ is marked, since π(JQ) is no longer closed (see lines 15 and 16 of Algorithm 2).

Notice that, as projection-join queries are generated in a breadth-first manner, the
‘best’ functional dependencies (i.e., those with minimal left-hand side) are discovered
last, during the projection loop. However, by doing so, we mark all queries that do not
have to be processed in the selection loop. The following example illustrates this point.

Example 5. In the context of Example 1, let us consider the projection loop associated
to the join query JQ = πABCDEσ(A=C)R. In this case, blocks(JQ) = {{A,C}, {B},
{D}, {E}}. Assuming that all projections are frequent and that JQ(I) satisfies A →
D, the following dependencies are found: ACBE → D, ACE → D, ACB → D
and AC → D. Consequently, the queries πACBE(JQ), πACE(JQ), πACB(JQ) and
πAC(JQ) are marked, and so, are not processed by the selection loop.

We note that, A → D is actually not found, because FDJQ contains A → C and
C → A, which enforces A and C to appear together in the projections. Of course,
A→ D is a consequence of AC → D and A→ C that now belong to FDJQ. �

11

The output of the projection loop is processed in the selection loop of Algorithm 3
as follows: for every non marked frequent projection-join query PQ, selections over
closed schemas are generated breadth-first by assigning constant values to some of the
attributes in π(PQ).

4 Experimental Results

The Conqueror+ algorithm was written in Java using JDBC to communicate with a
sqlite relational database. Experiments were run on a standard computer with 2GB
RAM and a 2.16 GHz processor. We also note that this implementation not only com-
putes frequent queries, but also association rules. The issue of association rules is
not addressed in this paper, due to lack of space. We performed experiments using
Conqueror+ and compared it to Conqueror [8]. We used the backend database of an
online quiz website [2] and a snapshot of the Internet Movie Database (IMDB) [11].
The characteristics of these databases are shown in Table 1.

SCORES.* 868755
SCORES.SCORE 14
SCORES.NAME 31934
SCORES.QID 5144
SCORES.DATE 862769
SCORES.RESULTS 248331
SCORES.MONTH 12
SCORES.YEAR 6
QUIZZES.* 4884
QUIZZES.QID 4884
QUIZZES.TITLE 4674
QUIZZES.AUTHOR 328
QUIZZES.CATEGORY 18
QUIZZES.LANGUAGE 2
QUIZZES.NUMBER 539
QUIZZES.AVERAGE 4796

(a) Quiz database

ACTORS.* 45342
ACTORS.AID 45342
ACTORS.NAME 45342
GENRES.* 21
GENRES.GID 21
GENRES.NAME 21
MOVIES.* 71912
MOVIES.MID 71912
MOVIES.NAME 71906
ACTORMOVIES.* 158441
ACTORMOVIES.AID 45342
ACTORMOVIES.MID 54587
GENREMOVIES.* 127115
GENREMOVIES.GID 21
GENREMOVIES.MID 71912

(b) IMDB

Table 1: Number of tuples per attribute in the QuizDB and IMDB databases

4.1 Impact of Dependency Discovery

We performed four types of experiments with functional dependencies. As a first type,
we executed the regular Conqueror. The second type, denoted ‘disc’ in Figure 1, is
Conqueror+ where discovery of dependencies is enabled, but the set of initial provided
dependencies is empty. The third type, denoted ‘given’, is Conqueror+ provided with
a set of initial dependencies, but without any discovery of functional dependencies.
For QuizDB we provided the key dependencies of the QUIZZES and SCORES rela-
tions, and for IMDB we provided the key dependencies for ACTORS, GENRES and
MOVIES. The fourth type, denoted as ‘given+disc’, is Conqueror+ provided with these
dependencies as well as discovery of new functional dependencies.

12

As can be seen in Figure 1a, Conqueror+ with discovery greatly outperforms Con-
queror in runtime. This is due to the large reduction in number of queries generated
which is clear from the figure. Adding an initial set of (key) functional dependencies
results in a small gain in runtime, due to a small reduction in number of queries gen-
erated. Similarly, providing a set of dependencies whilst also discovering new ones,
results in a small relative gain. We also observe that the exponential behavior of query
generation is still present, but only for low support values. Furthermore, for Conqueror+

with discovery, runtime remains almost linear for a large portion of the support values,
while for Conqueror, it is increasing rapidly.

The experiments on the IMDB shown in Figure 1b show similar results, but in this
case, the impact of discovery is smaller. The small amount of attributes in the database
reduces the impact of the use of functional dependencies. It is however clear that also in
this case, the discovery of functional dependencies reduces the exponentiality of query
generation and has an almost linear runtime. Likewise the small impact of providing
key dependencies as input to the algorithm, is comparable to QuizDB.

We also performed some time analysis to determine the cost of functional depen-
dency discovery. The results for an experiment using QuizDB are shown in Figure 2.
It is clear that the time needed for the discovery of functional dependencies (shown as
‘fdisc’ in Figure 2a) is negligible in comparison to the time gained in the selection loop
(shown as ‘sel’). Adding discovery also requires extra time in the join loop (shown as
‘join’), but again, the gain in the selection loop outweighs this. Looking at the partition-
ing of time in Figure 2b, we clearly see that most time is spent in output and input. Since
functional dependency discovery in Conqueror+ greatly reduces output and input, we
get a large reduction in runtime as was observed in Figure 1.

5 Related Work

Mining frequently occurring patterns in arbitrary relational databases has been the topic
of several research efforts. Dehaspe and Toivonen developed the WARMR algorithm [4],
that discovers association rules in over a limited type of Datalog queries in an Inductive
Logic Programming setting. The input to their algorithm consists of a collection of
databases, and then, queries are generated in a level-wise manner, and each candidate
query is evaluated against all of these databases. The frequency of a query is the number
of databases for which it gives a nonempty answer. Therefore, the interpretation of
frequent queries is incomparable to the conjunctive queries considered in this paper.

In [6], we studied a strict generalization of WARMR. The notion of diagonal con-
tainment provided an excellent tool to compare queries with different sets of projected
attributes. Unfortunately, the search space is infinite and there exist no most general
and no most specific patterns. However, the subclass of tree-shaped conjunctive queries
defined over a single binary relation representing a graph was studied, showing that
these tree queries are powerful patterns, useful for mining graph-structured data [7,
10]. In [8], we considered conjunctive queries over several relations, allowing a more
efficient algorithm, called Conqueror.

Considering projection-selection queries over a single relation, Jen et al. introduced
a new notion of query equivalence [13], taking functional dependencies into account,

13

QuizDB

support Q Q (disc) Q (given) Q (given+disc) AR AR (disc) FD (disc) AR + FD

(dics)

AR (given) FD (given) AR + FD

(given)

AR (given

+disc)

FD (given

+disc)

AR + FD

(given+disc)

runtime runtime (disc) runtime (given) runtime (given

+disc)

2000 414 35 381 27 1371 46 27 73 1293 7 1300 41 17 58 58738 18915 56645 19128

1000 946 67 907 72 3159 97 33 130 3073 7 3080 143 18 161 105323 22031 103394 22528

700 1362 105 1279 113 4345 147 33 180 4181 7 4188 203 18 221 131603 24595 132648 25221

500 2210 164 2097 174 6867 234 33 267 6643 7 6650 293 18 311 150602 25863 148833 26603

300 3528 253 3344 266 10630 353 39 392 10270 7 10277 437 18 455 197775 30803 197775 29411

200 5656 412 5405 457 17190 594 39 633 16643 7 16650 807 18 825 244571 32530 235013 33735

100 9607 733 9216 792 28862 1049 39 1088 28139 7 28146 1357 18 1375 265974 36247 261444 38595

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Queries

n
u
m

b
e
r

o
f

q
u
e
ri
e
s

minimal support

Q
Q (disc)
Q (given)
Q (given+disc)

0

7500

15000

22500

30000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Association Rules

n
u
m

b
e
r

o
f

ru
le

s

minimal support

AR
AR (disc)
AR (given)
AR (given+disc)

0

75000

150000

225000

300000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Runtime

m
ill

is
e
c
o

n
d

s

minimal support

runtime
runtime (disc)
runtime (given)
runtime (given+disc)

0

7500

15000

22500

30000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Rules

n
u
m

b
e
r

o
f

ru
le

s

minimal support

AR
AR + FD (dics)
AR + FD (given)
AR + FD (given+disc)

most specific join:

quizzes.quizid=scores.quizid

most general projection:

quizzen.quizlocatie quizzen.name quizzen.maker

quizzen.rubriek quizzen.taal scores.name

scores.quizlocatie scores.jaar

of which not allowed as constants:

quizzes.quizid scores.quizid

if given, FDs are:

quizzes.quizid->quizzes.name

quizzes.quizid->quizzes.maker

quizzes.quizid->quizzes.category

quizzes.quizid->quizzes.language

scores.quizid,scores.name->scores.score

scores.quizid,scores.name->scores.maand

scores.quizid,scores.name->scores.year

(a) QuizDB

IMDB

support Q Q (disc) Q (given) Q (given+disc) AR AR (disc) FD (disc) AR + FD

(dics)

AR (given) FD (given) AR + FD

(given)

AR (given

+disc)

FD (given

+disc)

AR + FD

(given+disc)

runtime runtime (disc) runtime (given) runtime (given

+disc)

jointime runtime runtime (disc) runtime (given) runtime (given

+disc)

2000 23 23 21 21 20 3
15 18

18
3 21

3
16 19

42805 42616 45022 43655 7680000 7722805 7722616 7725022 7723655

1000 23 23 21 21 20 3 15 18 18 3 21 3 16 19 42233 41981 41868 41476 7722233 7721981 7721868 7721476

700 23 23 21 21 20 3 15 18 18 3 21 3 16 19 42265 41778 45285 44848 7722265 7721778 7725285 7724848

500 29 25 27 23 27 4 15 19 25 3 28 4 16 20 61632 47471 61698 48154 7741632 7727471 7741698 7728154

300 29 25 27 23 27 4 15 19 25 3 28 4 16 20 61934 47958 62848 47456 7741934 7727958 7742848 7727456

200 53 33 51 31 55 8 15 23 53 3 56 8 16 24 63545 48078 67753 54675 7743545 7728078 7747753 7734675

100 281 109 279 107 321 46 15 61 319 3 322 46 16 62 63075 50483 61468 51647 7743075 7730483 7741468 7731647

50 2213 753 2211 751 2575 368 15 383 2573 3 2576 368 16 384 64742 49525 63508 47858 7744742 7729525 7743508 7727858

30 5381 1809 5379 1807 6271 896 15 911 6269 3 6272 896 16 912 65094 51096 66522 48766 7745094 7731096 7746522 7728766

20 9543 3199 9540 3196 11124 1589 17 1606 11121 3 11124 1589 17 1606 70177 49514 70289 49379 7750177 7729514 7750289 7729379

10 19761 6605 19758 6602 23045 3292 17 3309 23042 3 23045 3292 17 3309 127294 65904 349586 290889 7807294 7745904 8029586 7970889

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 70 140 210 280 350 420 490 560 630 700

Queries

n
u

m
b

e
r

o
f

q
u

e
ri
e
s

minimal support

Q
Q (disc)
Q (given)
Q (given+disc)

0

7500

15000

22500

30000

0 70 140 210 280 350 420 490 560 630 700

Association Rules

n
u

m
b

e
r

o
f

ru
le

s

minimal support

AR
AR (disc)
AR (given)
AR (given+disc)

0

100000

200000

300000

400000

0 70 140 210 280 350 420 490 560 630 700

Runtime

m
ill

is
e
c
o

n
d

s

minimal support

runtime
runtime (disc)
runtime (given)
runtime (given+disc)

?

0

7500

15000

22500

30000

0 70 140 210 280 350 420 490 560 630 700

Association Rules + Functional Dependencies

n
u

m
b

e
r

o
f

ru
le

s

minimal support

AR
AR + FD (dics)
AR + FD (given)
AR + FD (given+disc)

7700000

7800000

7900000

8000000

8100000

0 70 140 210 280 350 420 490 560 630 700

Runtime

m
ill

is
e
c
o

n
d

s

minimal support

runtime
runtime (disc)
runtime (given)
runtime (given+disc)

(b) IMDB

Fig. 1: Results for Conqueror, Conqueror+ with a set of Functional Dependencies given
but no detection (given), Conqueror+ with only detection of Functional Dependencies
(disc), and Conqueror+ both with given Functional Dependencies and detection.

14
QuizDB Disc No Discovery

join 47 29

proj 15963 17936

fdisc 10 0

sel 3712 9873

total 16010 27838

sel

18,8%

fdisc

0,1%

proj

80,9%

join

0,2%

Discoveryjoin
proj
fdisc
sel

sel

35,5%

proj

64,4%

join

0,1%

No Discoveryjoin
proj
fdisc
sel

1

10

100

1000

10000

100000

join proj fdisc sel total

Chart 15

Disc No Discovery

(a) Time Analysis

QUIZ DB, discovrey ON, output OFF Output ON

In MEM

generateQueries Total 157,667413 159,8952 354,3541

Algorithms 57,494288 97,92191 39,81962

Input Database Communication 100,173125 61,97329 95,75927

Output Databases Communication 218,7752

64%

36%

QuizDB without DB output

Algorithms Input Database Communication

Shop database, discovery on, minsup 3Shop database, discovery on, minsup 3Shop database, discovery on, minsup 3 with DB output

Algorithm: Join Loop 86,47168 14,311724

Projection Loop 72,15996 58,278623

Selection Loop 13,88133 13,881332

16%

67%

17%

Algorithm Loops

Join Loop Projection Loop Selection Loop

39%

61%

In memory QuizDB without DB output

Algorithms Input Database Communication

62%

27%

11%

QuizDB

Algorithms
Input Database Communication
Output Databases Communication

8%

42%
50%

Algorithm Loops

Join Loop Projection Loop Selection Loop

(b) Input/Output Time Analysis

Fig. 2: Time and I/O time analysis of a QuizDB experiment.

which is not the case in previous work. The approach of [13] has been generalised in
[14] to databases defined over multiple relations, organised according to a star schema.

All approaches other than those discussed just above and dealing with mining fre-
quent queries ([5, 9, 16, 17]) are far more restrictive than ours. Indeed, whereas our
approach considers several tables and all possible ways to count supports as distinct
values over all possible attribute sets, all these approaches consider a fixed relation to
be mined, along with a fixed characterisation of how to count supports. For instance,
in [9, 16] tuples are counted, Turmeaux et al. [17] characterize counting by tuple values
over a given attributes, whereas Diop et al. [5] characterize counting by a query, called
the reference. Notice that all these approaches (except for [17]) are also restricted to
conjunctive queries, as is the case in this paper.

6 Concluding Remarks

The contribution of this paper is threefold. First, we combined the results of different
prior work resulting in a new algorithm for mining association rules over simple con-
junctive queries in arbitrary relational databases, over which functional dependencies
are assumed. The algorithm makes use of the functional dependencies of the database
to optimise the generation of frequent queries and prune redundant queries. Second,
our new algorithm is capable of detecting new functional dependencies that were not
given but that hold on the database relations or on any join of these relations. Third,
these newly detected dependencies are used to prune even more redundant queries. We
implemented our algorithm, and we showed that it greatly outperforms our previous
methods and efficiently reduces the amount of queries generated.

Several new opportunities for future work exist. First, the additional use of key and
foreign key contraints is an issue that we are currently investigating. Other appealing re-
lated constraints are conditional functional dependency, introduced by Fan et al. [3]. As
these constraints generalise standard functional dependencies using selections, it seems
interesting to investigate how they could be used and discovered in our framework.

15

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery of
association rules. In Advances in Knowledge Discovery and Data Mining, pages 309–328.
AAAI-MIT Press, 1996.

2. R. Bocklandt. http://www.persecondewijzer.net.
3. Ph. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional

dependencies for data cleaning. In ICDE, pages 746–755, 2007.
4. L. Dehaspe and L. De Raedt. Mining association rules in multiple relations. In 7th Interna-

tional Workshop on Inductive Logic Programming, volume 1297 of LNCS, pages 125–132.
Springer Verlag, 1997.

5. C.T. Diop, A. Giacometti, D. Laurent, and N. Spyratos. Composition of mining contexts for
efficient extraction of association rules. In EDBT’02, volume 2287 of LNCS, pages 106–123.
Springer Verlag, 2002.

6. B. Goethals and J. Van den Bussche. Relational association rules: getting warmer. In ESF
Exploratory Workshop on Pattern Detection and Discovery in Data Mining, volume 2447 of
LNCS, pages 125–139. Springer, 2002.

7. B. Goethals, E. Hoekx, and J. Van den Bussche. Mining tree queries in a graph. In ACM
KDD, pages 61–69, 2005.

8. B. Goethals, W. Le Page, and H. Mannila. Mining association rules of simple conjunctive
queries. In SIAM-SDM, pages 96–107, 2008.

9. J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. Dmql : A data mining query language
for relational databases. In SIGMOD-DMKD’96, pages 27–34, 1996.

10. E. Hoekx and J. Van den Bussche. Mining for tree-query associations in a graph. In IEEE
ICDM), pages 254–264, 2006.

11. IMDB. http://imdb.com. 2008.
12. A. Inokuchi, T. Washio, and H. Motoda. An Apriori-based algorithm for mining frequent

substructures from graph data. In PKDD, volume 1910 of LNCS, pages 13–23. Springer,
2000.

13. T.Y. Jen, D. Laurent, and N. Spyratos. Mining all frequent selection-projection queries from
a relational table. In EDBT’08, pages 368–379. ACM Press, 2008.

14. T.Y. Jen, D. Laurent, and N. Spyratos. Mining frequent conjunctive queries in star schemas.
In International Database Engineering and Applications Symposium (IDEAS), pages 97–
108. ACM Press, 2009.

15. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In IEEE ICDM, pages 313–
320, 2001.

16. R. Meo, G. Psaila, and S. Ceri. An extension to sql for mining association rules. Data Mining
and Knowledge Discovery, 9:275–300, 1997.

17. T. Turmeaux, A. Salleb, C. Vrain, and D. Cassard. Learning caracteristic rules relying on
quantified paths. In PKDD, volume 2838 of LNCS, pages 471–482. Springer Verlag, 2003.

18. E.W. Weisstein. Restricted growth string. In From MathWorld – A Wolfram Web Resource
(http://mathworld.wolfram.com/RestrictedGrowthString.html), 2009.

19. X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In IEEE ICDM, page
721, 2002.

20. M.J. Zaki. Efficiently mining frequent trees in a forest. In ACM KDD, pages 71–80, 2002.

