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Abstract. We present an algorithm for mining frequent queries in arbitrary re-
lational databases, over which functional dependencies are assumed. Building
upon previous results, we restrict to the simple, but appealing subclass of simple
conjunctive queries. The proposed algorithm makes use of the functional depen-
dencies of the database to optimise the generation of queries and prune redundant
queries. Furthermore, our algorithm is capable of detecting previously unknown
functional dependencies that hold on the database relations as well as on joins
of relations. These detected dependencies are subsequently used to prune redun-
dant queries. We propose an efficient database-oriented implementation of our
algorithm using SQL, and provide several promising experimental results.

1 Introduction

The discovery of recurring patterns in databases is one of the main topics in data min-
ing and many efficient solutions have been developed for different classes of patterns
and data collections. Almost all techniques, however, work on so called transaction
databases [1]. Not only for itemsets, but also in the case of trees [20] and graphs [12,
15, 19], the database consists of a collection of transactions, and a frequent pattern is
discovered if it occurs in enough such transactions. Even in the multi-relational case,
as considered in the WARMR system [4], the database can be seen as a collection of
transactions in which each transaction consists of a small relational database. A query
is then called frequent if it gives a non-empty answer in enough of such databases.

Obviously, many relational databases are not suited to be converted into such a
transactional format and even if this would be possible, a lot of information implicitly
encoded in the relational model would be lost after conversion. Recently, we have con-
sidered association rule mining on arbitrary relational databases by combining pairs of
queries which could reveal interesting properties in the database [8, 13]. Intuitively, we
pose two queries on the database such that one query is more specific than the other
(w.r.t. query containment). Then, if the number of tuples in the output of both queries is
almost the same, a potentially interesting discovery is revealed.

To illustrate, consider the well known Internet Movie Database [11] containing al-
most all possible information about movies, actors and everything related to that, and
consider the following queries: first, we ask for all actors that have starred in a movie of
the genre ‘drama’; then, we ask for all actors that have starred in a movie of the genre
‘drama’, but that also starred in a (possibly different) movie of the genre ‘comedy’.



Now suppose the answer to the first query consists of 1000 actors, and the answer to the
second query consists of 900 actors. Obviously, these answers do not necessarily reveal
any significant insights on themselves, but when combined, it reveals the potentially
interesting pattern that actors starring in ‘drama’ movies typically (with a probability
of 90%) also star in a ‘comedy’ movie. Of course, this pattern could also have been
found by first preprocessing the database, and creating a transaction for each actor con-
taining the set of all genres of movies he or she appeared in. Similarly, a pattern like:
77% of the movies starring Ben Affleck, also star Matt Damon, could be found by pos-
ing the query asking for all movies starring Ben Affleck, and the query asking for all
movies starring both Ben Affleck and Matt Damon. Again, this could also be found
using frequent set mining methods, but this time, the database should have been dif-
ferently preprocessed in order to find this pattern. Furthermore, it is even impossible to
preprocess the database only once in such a way that the above two patterns would be
found by frequent set mining, as they are counting different types of transactions: actors
in the first example and movies in the second example.

Also truly relational patterns can be found which can not be found using typical
set mining techniques, such as 80% of all movie directors that have ever been an actor
in some movie, also star in at least one of the movies they directed. This is expressed
by two queries of which one asks for all movie directors that have ever acted, and the
second one asks for all movie directors that have ever acted in one of their own movies.

The Conqueror algorithm recently developed by Goethals et al. [8] has shown to dis-
cover interesting association rules over a simple, but appealing subclass of conjunctive
queries, called simple conjunctive queries. Furthermore, the algorithm had an efficient
database-oriented implementation in SQL. One challenge that remained to be solved in
this approach, was the huge number of generated patterns. Part of the volume is inher-
ently due to the relational setting, but a substantial part, however, is due to redundancies
induced by dependencies embedded in the data.

Jen et al. [13], studied the problem of mining all frequent queries from a single
relational table. They considered projection-selection queries, and assumed that the ta-
ble to be mined satisfies a set of functional dependencies. A pre-ordering over queries
was defined, and shown to be anti-monotonic towards the support measure. Moreover,
this pre-ordering induces an equivalence relation and two equivalent queries are shown
to have the same support. Therefore, one computation per equivalence class allows to
know the support of all queries in that class. In [14], this work has been generalised to
several tables in the case where the database operates over a star schema. The challenge
however remains to generalise the theory to arbitrary relational databases.

Clearly, the combination of the approaches in [13] and [8] would resolve the issues
posed, i.e., mining non redundant simple conjunctive queries (thus including arbitrary
joins), given a collection of functional dependencies over the relations of an arbitrary
relational database. This is one major contribution of this paper.

Moreover, combining these techniques also results in new opportunities. That is,
next to the given functional dependencies, we introduce a novel technique to discover
previously unknown functional dependencies, and immediately exploit them for reduc-
ing the number of frequent queries in the output. Furthermore, we do so not only for
the relations of the database, but also for any join of relations. This is the second con-



tribution of this paper, and several experiments clearly show the benefits of this ap-
proach, thus making the discovery of simple conjunctive queries a feasible and attrac-
tive method towards the exploration of arbitrary relational databases.

The paper is organised as follows: In Section 2, we recall the basic concepts and
definitions used in this work and we briefly review from [13] how functional dependen-
cies are used to compare queries. We present our algorithm Conqueror™ in Section 3,
combining the two approaches [8, 13], and in Section 4, we report experiments, showing
that Conqueror™ clearly outperforms Conqueror. We conclude in Section 6.

2 Formal Model

2.1 Background

We consider a fixed attribute set U and a relational database schema D = {Ry, ..., R,}
over U in which, for+ = 1,...,n, R; is a relation name associated with a subset of U,
called the schema of R; and denoted by sch(R;). Without loss of generality, we assume
that, for all distinct 7 and j in {1, ..., n}, sch(R;) N sch(R;) = 0. In order to make this
assumption explicit, for all ¢ in {1,...,n}, every A in sch(R;) is referred to as R;.A.

We also assume that we are given functional dependencies over D. More precisely,
each R; is associated with a set of functional dependencies over sch(R;), denoted by
FD;, and the set of all functional dependencies defined in D is denoted by FD.

As in [8], the queries of interest in our approach, are conjunctive projection-selection-
join queries whose joins are expressed using a conjunction of selection conditions of
the form R;.A = R;.A’. We note that by doing so, all possible equi-joins can be con-
sidered, which would not the case using the universal relation associated to the given
database. Moreover, we recall from [8] that such a conjunctive condition F' induces a
partition blocks(F') of U, where every block 5 of blocks(F') is a maximal set of at-
tributes such that for all R;.A and R;.A" in 3, R;.A = R;.A’ is a consequence of F.
In such a case, we say that R; and R; are connected through I

Definition 1 Denoting by R the cartesian product Ry X ... X Ry, let Q = nxopR
where F = x(Q) A 0(Q), such that x(Q) and o(Q) are respectively conjunctions of
selection conditions of the form R; A = R;. A’ and R,.A = a, where i, j and k are in
{1,...,n}and ais in dom(A). Q = nxopR is said to be a simple conjunctive query
if all relation names occurring in X or in 0(Q) are connected through x(Q).

Given a simple conjunctive query QQ = wxorR, the set X is denoted by 7(Q) and
the tuple defined by the conjunctive selection condition o(Q) is denoted by Q°.

We call Q a join query if 0(Q) is the empty condition and if w(Q) is the set of all
attributes of all relation names occurring in X(Q). Given a simple conjunctive query
Q, we denote by J(Q) the join query such that x(J(Q)) =x(Q).

To simplify notation, given a simple conjunctive query (), the corresponding partition
of U, blocks(x(Q)) is simply denoted by blocks(Q). We emphasise that, according to
Definition 1, considering simple conjunctive queries avoids computing cartesian prod-
ucts. We illustrate this definition below.



Example 1. Let us consider a database schema D consisting of two relation names R
and Ry with the following schemas: sch(R;) = {A, B} and sch(Rg) = {C, D, E'}.

According to Definition 1, R denotes the cartesian product R; x Rs. Since sch(R1)N
sch(Rg) is clearly empty, in this example and in the forthcoming examples dealing with
D, we do not prefix attributes with relation names. For example, R;.A is denoted by A.

The query Q = TApT(A=B)A(E=e) IR is not a simple conjunctive query because Ry
and R are not connected through the condition A = B. Computing the answer to this
query requires to consider explicitly the cartesian product R; x Ro.

On the other hand, Q)1 = Tapo(a—c)a(E=c) R is a simple conjunctive query such
that X(Q1) = (A = C), 7(Q1) = AD, 0(Q1) = (E = e) and Q° = e. Moreover,
J(Q1) = TaBcDEO(A=c) R, and blocks(Q1) contains four blocks, namely: {4, C},
{B}, {D} and {E}. In this case, computing the answer to (); does not require to
consider the cartesian product Ry X Ra, since Ry and R, are joined through A = C. O

We now define as in [8] the support of a query, and when a query is said to be frequent.

Definition 2 Given an instance I of D and a simple conjunctive query Q, the answer
to Q in T is denoted by Q(I) and is seen as a set in which no duplicates are allowed.

The support of Q in I, denoted supportz(Q) or simply support(Q), is the cardi-
nality of the answer to Q) in L. Given a minimum support threshold minsup, Q) is said
to be frequent if support(Q) > minsup.

To end the preliminaries, we mention the strong relationship between support and func-
tional dependency, as stated by the following proposition whose easy proof is omitted.

Proposition 1 Let T be a relational table over the attribute set sch(T) and let X and
X' be subsets of sch(T). T satisfies X — X' if and only if support(nxx'T) =
support(mxT).

In the context of Example 1, for Q = mapoa=c)R and Q' = ma0(a=c)R, con-
sidering an instance Z of D for which support(Q) = support(Q’) indicates that
o(a=c)R(Z) satisfies the functional dependency A — D. Consequently, for every
conjunctive selection condition S, the queries Qs = Tapoa—c)asR and Q5 =
TAT(A=cyns R also have the same support. Thus, computing the support of Qs is re-
dundant, assuming that the support of Qs is known.

We recall that one of the main contributions of this paper is to discover functional
dependencies in order to avoid computing unnecessary supports.

2.2 Query Comparison
Inspired by [13], we compare queries based on functional dependencies.

Definition 3 Let ()1 = 7mx,0r R and Q2 = mx,0r, R be two simple conjunctive
queries. Denoting by Y; the schema of Q7, fori = 1,2, Q1 = Q2 holds if

1. X(Q1) €x(Q2),
2. J(Q2)(Z) satisfies X1Ys — Xo and Yo — Y, and

3. the tuple Q Q3 is in Ty, v, J (Q2)(T).



Example 2. In the context of Example 1, assume that FD; = () and FDy = {C =
D FE — D}, and let Q1 = WADU(A:C)/\(E:E)R and Qo = WCJ(A:C)/\(D:d)R~

We have M(Ql) ZN(QQ) and J(Q1) = J(Qz) = WABCDEU(A:C)R- Then, if
T is an instance of D, J(Q2)(Z) satisfies FD. Moreover, due to the equality defining
x(Q2), J(Q2)(Z) also satisfies A — C and C' — A. Therefore, J(Q2)(Z) satisfies
CE — AD and E — D, and so, if de € mppJ(Q2)(Z), by Definition 3, Q2 < Q. O

It can be seen from [13] that < is a pre-ordering and that the support of queries is anti-
monotonic with respect to <. In other words, for all )1 and Q)5 such that Q)1 =X Qo,
we have support(Q2) < support(Q1). Anti-monotonicity is used in our algorithms to
prune infrequent queries, in much the same way as in Apriori [1].

Moreover, the pre-ordering < induces an equivalence relation, denoted by ~, de-
fined as follows: given two simple conjunctive queries )7 and 2, @1 ~ @2 holds if
@1 = Q2 and Q2 =X Q1. As a consequence of anti-monotonicity, if )1 ~ Q2 holds
then support(Q1) = support(Q2). Thus, only one computation per equivalence class
modulo ~ allows to know the support of all queries in that class.

In order to characterize equivalence classes modulo ~, we denote by X the closure
of a relation schema X with respect to a given set of functional dependencies F'D.
Then, based on [13], it can be seen that for )1 = 7x,0p R and Q2 = 7x,0p, R,
Q1 ~ Q9 holds if and only if x(Q1) =x(Q2), (X1Y1)T = (X2Y2)*, Y;" = Y," and
QTQ3 € Ty, J(Ql ) (I)

Now, given a query (), the representative of the equivalence class of ) considered
in this paper is the query Q, such that 7(Q") = 7(Q)™, x(QT) =x(Q) and o (Q™)
is the selection condition corresponding to the super tuple of Q°, denoted by (Q7)*,
defined over sch(Q”)", and that belongs to Ty.p,(o)+J (Q)(Z).

Moreover, if 7(Q) C sch(Q7) then the support of @ is 1, which is meant to be less
than the minimum support threshold. Therefore, the queries @) of interest are such that

m(Q) =m(Q)*F, sch(Q7) = sch(Q7) ", and sch(Q7) C 7(Q).
In what follows, such queries are said to be closed queries and the closed query equiv-
alent to a given query @ is denoted by Q.

It is important to notice that, considering only such queries in our algorithms, re-
duces the size of the output set of frequent queries.

Example 3. Referring back to the queries Q1 and Q)2 of Example 2, it is easy to see
that they do not satisfy the restrictions above. For instance, as sch(Qf) = E and
m(Q1) = AD, the inclusion sch(QJ) C w(Q1) is not satisfied. It can be seen that
none of these queries are closed, and thus, none of them is considered in our algo-
rithms. But as J(Q)(Z) satisfies C — D, E — D, A — C and C — A, the closed
queries Q7 and QF defined below are processed instead.

Qf = macpEo(a=c)r(E=e)R and QF = TACDET(A=C)A(E=e)r(D=d) B-
We also note that ()1 and Q2 would not be considered either in [8], as in there, 7(Q;)
(i = 1,2) is required to contain all attributes from the same block of blocks(Q;)
but no attributes from o (Q;). Thus, in [8], Q] = TacpO(A=c)A(E=e)R and Q) =
TACT(A=C)A(E=e)n(D=d) IR are processed instead. As Q; ~ Q] ~ Qf fori = 1,2,
these queries have the same support. U

(@
(@



3 Mining Queries under Functional Dependencies

3.1 Algorithm Conqueror™

In this section, we present our algorithm called Conqueror™ (given as Algorithm 1) for
mining frequent queries. We mention in this respect that frequent simple conjunctive
queries 7x o p R are mined in much the same way as the Conqueror algorithm [8], that
is, according to the following steps:

— Join loop: Generate all instantiations of F’, without constants, in a breadth-first
manner, using restricted growth to represent partitions [8]. Every partition gives
rise to a join query J() and functional dependencies of its ancestors are inherited.

— Projection loop: For each generated partition, all projections of the correspond-
ing join query J() are generated in a breadth-first manner, and their frequency is
tested against the given instance Z. During this loop, functional dependencies are
discovered and used to prune the search space.

— Selection loop: For each frequent projection-join query, constant assignments are
added to F' in a breadth-first manner, as in Conqueror. Moreover, here again, func-
tional dependencies are used to prune the search space.

As in the Conqueror algorithm, attributes are ordered, so as candidate queries are gen-
erated at most once in the different loops: This ordering is implicit lines 1 and 12 in
Algorithm 1 (the k-th element in the string refers to the k-th attribute according to the
ordering), and is explicitly used line 17 in Algorithm 2 and line 10 in Algorithm 3.

As an important difference with the Conqueror algorithm, a (possibly empty) set
of functional dependencies FD can be specified as input. This set is first used for the
relations of the database instance (line 3 of Algorithm 1) and then augmented during
the projection loop (line 15 of Algorithm 2).

3.2 Join Loop

The generation of joins is done in much the same way as in Conqueror ([8]), by gen-
eration of restricted growth strings [18]. Such a restricted growth string represents a
partition of the attributes, and such a partition maps to a join.

For example, referring back to Example 1, the set U of all attributes occurring in D
is {A, B, C, D, E}. Then, the restricted growth string 12231 represents the condition
(A = E) A (B = C), which corresponds to the partition {{4, E}, {B,C}, {D}}.

As in the Conqueror algorithm, we include a check against the user defined most
specific join, which allows a user to specify the sensible joins in the database (see
line 11, Algorithm 1). By default, however, every possible join of every attribute pair is
considered. A new addition to the join loop is the inheritance of functional dependencies
shown on lines 13-14, and discussed in detail in Section 3.5.

3.3 Projection Loop

Compared to the Conqueror algorithm, one major change in the projection loop is the
fact that the generation of selections is now performed after all projections are gener-
ated (line 22, Algorithm 2) so as to be able to immediately use the discovered functional



Algorithm 1 Conqueror™

Input: Database D, Set of functional dependencies /"D, Minimum support threshold minsup
Output: Frequent Queries FQ

1: x(Q) :=“1”// initial restricted growth string

2: for all R; in D do

3: FDq:=FD;

4:  push(Queue, R;)

/1 Join Loop

5: while not Queue is empty do

6: JQ := pop(Queue)

7:  if x(JQ) does not represent a cartesian product then

8: FQ := FQ U ProjectionLoop(JQ)

9:  children := RestrictedGrowth(x(JQ), m)
10:  for all rgs in children do

11: if join defined by rgs is not more specific than the user most specific join then

12: X(JQC) :=rgs

13: for all PJQ such that x(JQC) = x(PJQ) A (R;.A = R;.A") do

14: FDjqc =FDiqgc UFDpiq

15: if }(PJQ) = “1” then

16: fDJQc = .FDJQC U {Ri.A — RJ'.A/7 Rj.A/ — Ri.A}

17: blocks(JQC) := blocks(JQ) where the blocks containing R;.A and R,;.A’ are merged
18: push(Queue, JQC)

19: return FQ

dependencies to prune redundant queries. The functional dependency discovery is per-
formed lines 13-16 of Algorithm 2 and is discussed in Section 3.5.

We point out that, according to lines 17-20 of Algorithm 2, candidate projection
queries are generated by removing blocks in blocks(JQ), because attributes in a given
block are mutually dependent. However, it might be the case that removing such a block
does not result in a closed projection schema. This is why, line 9 of Algorithm 2, we
check whether 7(PQ) is closed; if not, the projection query is simply queued without
any further processing. This however induces complications in the monotonicity check
line 10 of Algorithm 2, because projections over non closed schemas are not processed.
To cope with this difficulty, if PQ is such that m(PQ) is closed, for every predecessor
PPQ of PQ, the closure of m(PPQ) under FDq is computed. The check is passed if all
corresponding projection queries are in FPQ.

Also notice that the function blocks(Q) returns the set of connected blocks of a
restricted growth string, i.e., the connected part of the partition blocks(Q). We require
such blocks to form a single connected component, so as to avoid considering cartesian
products, as stated in Definition 1. Clearly, line 7 in Algorithm 1 prunes these queries.

3.4 Selection Loop

In the selection loop of our new algorithm, marked queries are not considered, since
they are redundant (line 23, Algorithm 2). When adding blocks to the selection con-
dition, the closure is taken, ensuring no redundant queries are generated (line 13, Al-



Algorithm 2 ProjectionLoop

Input: Conjunctive Query Q
1: if x(Q) = “1” then
m(Q) := sch(R;) // Q is the query R;
. else
7(Q) := union of blocks(Q)

3
4:
5: push(Queue, Q)
6: FPQ :=0)
7
8

»

: while not Queue is empty do
PQ := pop(Queue)

0 &

if 7(PQ) is closed then
10: if monotonicty(PQ) then
11: if support(PQ) > minsup then
12: FPQ := FPQ U {PQ}
13: for all PPQ in FPQ such that (A PPQ’ € FPQ : n(PQ) C n(PPQ’) C n(PPQ)) do
14: if support(PQ) = support(PPQ) then
15: FDq = FDq U {n(PQ) — n(PPQ) \ 7(PQ)}
16: mark PQ

17:  for all 5 > lastremoved(PQ) do

18: 7(PQC) := n(PQ) with block 5 removed
19: lastremoved(PQC) = 3

20: push(Queue, PQC)

21: FQ :=FQ U FPQ

22: for all PQ € FPQ do

23:  if PQ is not marked then

24: FQ := FQ U SelectionLoop(PQ)

25: return FQ

gorithm 3). However, closing of these sets of blocks requires to reorder the queue of
candidates in order to use the Apriori-trick. The following example illustrates this point.

Example 4. Considering the attributes A, B and C, along with the functional depen-
dency A — B, the generation of sets for the selection results in the generation-tree
(a) shown below. Indeed, the addition of A entails that B must also be added so as to
consider closed schemas only.

However, because of the monotonicity property, we need to consider B before AB
(since the selection according to B is less restrictive than that according to AB). We
accomplish this by reordering the candidate queue, to ensure B is considered before
AB and BC is considered before ABC, as shown in the generation-tree (b) below. [

(a) 0 ® 0
A VA N

AB =B C AB

Ll AR

ABC > BC BC < ABC



Moreover, as stated previously, line 14 of Algorithm 3 ensures that o(Q) is a strict sub-
set of 7(Q). However, not all strict subsets of 7(PQ) are considered, since we only
have to consider assignments over closed schemas under FD ;g (see line 13, Algo-
rithm 3). Furthermore, in line 14 of Algorithm 3, we make sure that the corresponding
closure has not been processed previously, which can happen since a closed set can be
generated from several non-closed sets.

Then, in lines 7-8 of Algorithm 3, the obtained queries are processed against Z
using the same strategy as in [8]. The instantiation of constant values in Algorithm 3 is
performed analogously to Conqueror by performing SQL queries in the database. For
further details, we therefore refer the reader to [8].

Algorithm 3 SelectionLoop

Input: Conjunctive Query Q
1: push(OrderedQueue,Q)
2: while not OrderedQueue is empty do

3:  CQ :=pop(OrderedQueue)

4: if 0(CQ) = () then

5: toadd := all blocks of 7(Q)

6: else if monotonicty(C'(Q) then

7 if exist frequent constant values for o(CQ) in Z then
8: FQ := FQ U instances of CQ

9: uneq = all blocks of 7(Q) ¢ o(CQ)

10: toadd := all blocks B in uneq > last of o(CQ)

11:  for all B; € roadd do

12: o(CQC) := o(CQ) with B; added

13: o(CQC) := closure of o(CQC) under FDq

14: if (CQC) has not been generated before and o(CQC) is different than 7(Q) then
15: push(OrderedQueue, CQC)

16: return FQ

3.5 Handling and Discovering Functional Dependencies
In this section, we show that, according to our algorithms:

1. A given join query is associated with the set of all functional dependencies satisfied
by its predecessor join queries.

2. Only join and projection queries over closed relation schemas are processed.

3. Considering given functional dependencies along with discovered functional de-
pendencies preserves the above property.

Handling Functional Dependencies. A given join query J() is associated with a set
of functional dependencies, denoted by 7D g, and built up in Algorithm 1 as follows.

First, when x(Q) is the restricted growth string 1, every instantiated relation R;(Z)
in the database is pushed in Queue (lines 2 and 5, Algorithm 2), associated with the
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set FD; (see line 3, Algorithm 1). Then, the restricted growth strings represent a
join condition of the form (R;.A = R;.A’). Denoting by J@ the corresponding join
query, if R; = R; then JQ(Z) satisfies FD; (since JQ is a selection of R;) along
with RZA — RZA/ and RZA/ — RZA Thus, .FD]Q is set to FD; U {RZA —
R;.A",R;.A" — R;.A}. Similarly, if R; # R;, then JQ is a join of R; and R}, and so,
JQ(Z) satisfies FD; U FD;, as wellas R;. A — R;.A" and R;. A" — R;.A. Thus, we
set FDjgo = FD; UFD; U{R;.A — R; A", R;. A’ — R;.A} (see lines 13-16 of Al-
gorithm 1). At this stage, w(JQ) is either sch(R;) (if R; = R;) or sch(R;) U sch(R;)
(if R; # R;), and so, w(JQ) is closed under FD ;.

In the general case, at a given level, the join query J( is generated from join queries
PJQ in the previous level by setting X (JQ) to x(PJQ) A (R;.A = R;.A"), and
by augmenting 7(PJQ) accordingly. Therefore, JQ(Z) satisfies the dependencies of
FDpjq, and thus, FD jq is set to be the union of all FDp jq where PJQ allows to
generate JQ (see lines 13-14 of Algorithm 1). Consequently, assuming that 7(PJQ)
is closed under FDp ;¢ clearly entails that 7(JQ) is closed under FD ;.

Thus, for every join query J@Q, 7(JQ) is closed under those functional dependen-
cies of FD ;g that belong to FD or that are obtained through the connected blocks
of blocks(JQ). Moreover, the discovered functional dependencies in the projection
loop of J( preserve this property, because these new dependencies are defined with at-
tributes in 7(JQ) only. Thus, for every join query JQ, w(JQ) is closed under FD ;.

Then, the check performed line 9 of Algorithm 2 ensures that only those projection-
join queries P() such that 7(P(Q) is closed under FD ;¢ are considered. We note that
for performing this check, it is enough to make sure that there is no dependency X — Y
in D jq such that X C 7n(PQ) and Y Z n(PQ).

Discovering Functional Dependencies. Functional dependencies, other than those in
FD, are discovered in the projection loop (see lines 13-16 of Algorithm 2) as fol-
lows. At a given level, a projection-join query P() is generated from the projection-
join queries PPQ of the previous level by removing blocks from 7(PPQ). Thus, by
Proposition 1, if support(PQ) = support(PPQ) (see line 14 of Algorithm 2), JQ(Z)
satisfies 7(PQ) — 7m(PPQ) \ m(PQ). The dependency is thus added to FD ;g and
PQ is marked, since w(.JQ) is no longer closed (see lines 15 and 16 of Algorithm 2).
Notice that, as projection-join queries are generated in a breadth-first manner, the
‘best’ functional dependencies (i.e., those with minimal left-hand side) are discovered
last, during the projection loop. However, by doing so, we mark all queries that do not
have to be processed in the selection loop. The following example illustrates this point.

Example 5. In the context of Example 1, let us consider the projection loop associated
to the join query JQ = mapcpEo(a—c)R. Inthis case, blocks(JQ) = {{A,C}, {B},
{D}, {E}}. Assuming that all projections are frequent and that JQ(Z) satisfies A —
D, the following dependencies are found: ACBE — D, ACE — D, ACB — D
and AC — D. Consequently, the queries macpr(JQ), Tace(JQ), Tacp(JQ) and
mac(JQ) are marked, and so, are not processed by the selection loop.

We note that, A — D is actually not found, because 7D ;¢ contains A — C and
C — A, which enforces A and C to appear together in the projections. Of course,
A — D is a consequence of AC' — D and A — C that now belong to 7D jq. O
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The output of the projection loop is processed in the selection loop of Algorithm 3
as follows: for every non marked frequent projection-join query P(Q), selections over
closed schemas are generated breadth-first by assigning constant values to some of the
attributes in 7(PQ).

4 Experimental Results

The Conqueror™ algorithm was written in Java using JDBC to communicate with a
sqlite relational database. Experiments were run on a standard computer with 2GB
RAM and a 2.16 GHz processor. We also note that this implementation not only com-
putes frequent queries, but also association rules. The issue of association rules is
not addressed in this paper, due to lack of space. We performed experiments using
Conqueror™ and compared it to Conqueror [8]. We used the backend database of an
online quiz website [2] and a snapshot of the Internet Movie Database (IMDB) [11].
The characteristics of these databases are shown in Table 1.

SCORES.* 868755

SCORES.SCORE 14 ACTORS. 45342

ACTORS.AID 45342
SCORES.NAME 31934

ACTORS.NAME 45342
SCORES.QID 5144 GENRES 3
SCORES.DATE 862769 GENRES' ISD) 1
SCORES.RESULTS 248331 :

GENRES.NAME 21
SCORES.MONTH 12 =

MOVIES.* 71912
SCORES.YEAR 6

MOVIES.MID 71912
QUIZZES * 4884

MOVIES.NAME 71906
QUIZZES.QID 4884 =

ACTORMOVIES." 158441
QUIZZES.TITLE 4674

ACTORMOVIES.AID | 45342
QUIZZES.AUTHOR 328

ACTORMOVIES.MID| 54587
QUIZZES.CATEGORY 18 =

GENREMOVIES. 127115
QUIZZES.LANGUAGE 2

GENREMOVIES.GID 21
QUIZZES NUMBER 539 GENREMOVIES MID| 71912
QUIZZES.AVERAGE 4796

(a) Quiz database (b) IMDB
Table 1: Number of tuples per attribute in the QuizDB and IMDB databases

4.1 Impact of Dependency Discovery

We performed four types of experiments with functional dependencies. As a first type,
we executed the regular Conqueror. The second type, denoted ‘disc’ in Figure 1, is
Conquerort where discovery of dependencies is enabled, but the set of initial provided
dependencies is empty. The third type, denoted ‘given’, is Conqueror™ provided with
a set of initial dependencies, but without any discovery of functional dependencies.
For QuizDB we provided the key dependencies of the QUIZZES and SCORES rela-
tions, and for IMDB we provided the key dependencies for ACTORS, GENRES and
MOVIES. The fourth type, denoted as ‘given-+disc’, is Conqueror™ provided with these
dependencies as well as discovery of new functional dependencies.
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As can be seen in Figure 1a, Conqueror™ with discovery greatly outperforms Con-
queror in runtime. This is due to the large reduction in number of queries generated
which is clear from the figure. Adding an initial set of (key) functional dependencies
results in a small gain in runtime, due to a small reduction in number of queries gen-
erated. Similarly, providing a set of dependencies whilst also discovering new ones,
results in a small relative gain. We also observe that the exponential behavior of query
generation is still present, but only for low support values. Furthermore, for Conqueror™
with discovery, runtime remains almost linear for a large portion of the support values,
while for Conqueror, it is increasing rapidly.

The experiments on the IMDB shown in Figure 1b show similar results, but in this
case, the impact of discovery is smaller. The small amount of attributes in the database
reduces the impact of the use of functional dependencies. It is however clear that also in
this case, the discovery of functional dependencies reduces the exponentiality of query
generation and has an almost linear runtime. Likewise the small impact of providing
key dependencies as input to the algorithm, is comparable to QuizDB.

We also performed some time analysis to determine the cost of functional depen-
dency discovery. The results for an experiment using QuizDB are shown in Figure 2.
It is clear that the time needed for the discovery of functional dependencies (shown as
‘fdisc’ in Figure 2a) is negligible in comparison to the time gained in the selection loop
(shown as ‘sel’). Adding discovery also requires extra time in the join loop (shown as
‘join’), but again, the gain in the selection loop outweighs this. Looking at the partition-
ing of time in Figure 2b, we clearly see that most time is spent in output and input. Since
functional dependency discovery in Conqueror™ greatly reduces output and input, we
get a large reduction in runtime as was observed in Figure 1.

5 Related Work

Mining frequently occurring patterns in arbitrary relational databases has been the topic
of several research efforts. Dehaspe and Toivonen developed the WARMR algorithm [4],
that discovers association rules in over a limited type of Datalog queries in an Inductive
Logic Programming setting. The input to their algorithm consists of a collection of
databases, and then, queries are generated in a level-wise manner, and each candidate
query is evaluated against all of these databases. The frequency of a query is the number
of databases for which it gives a nonempty answer. Therefore, the interpretation of
frequent queries is incomparable to the conjunctive queries considered in this paper.

In [6], we studied a strict generalization of WARMR. The notion of diagonal con-
tainment provided an excellent tool to compare queries with different sets of projected
attributes. Unfortunately, the search space is infinite and there exist no most general
and no most specific patterns. However, the subclass of tree-shaped conjunctive queries
defined over a single binary relation representing a graph was studied, showing that
these tree queries are powerful patterns, useful for mining graph-structured data [7,
10]. In [8], we considered conjunctive queries over several relations, allowing a more
efficient algorithm, called Conqueror.

Considering projection-selection queries over a single relation, Jen et al. introduced
a new notion of query equivalence [13], taking functional dependencies into account,
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Queries Runtime
10000 300000
+ Q + runtime
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(a) QuizDB
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Fig. 1: Results for Conqueror, Conqueror™ with a set of Functional Dependencies given
but no detection (given), Conqueror™ with only detection of Functional Dependencies
(disc), and Congueror™ both with given Functional Dependencies and detection.
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Fig. 2: Time and I/O time analysis of a QuizDB experiment.

which is not the case in previous work. The approach of [13] has been generalised in
[14] to databases defined over multiple relations, organised according to a star schema.

All approaches other than those discussed just above and dealing with mining fre-
quent queries ([5,9, 16, 17]) are far more restrictive than ours. Indeed, whereas our
approach considers several tables and all possible ways to count supports as distinct
values over all possible attribute sets, all these approaches consider a fixed relation to
be mined, along with a fixed characterisation of how to count supports. For instance,
in [9, 16] tuples are counted, Turmeaux et al. [17] characterize counting by tuple values
over a given attributes, whereas Diop et al. [5] characterize counting by a query, called
the reference. Notice that all these approaches (except for [17]) are also restricted to
conjunctive queries, as is the case in this paper.

6 Concluding Remarks

The contribution of this paper is threefold. First, we combined the results of different
prior work resulting in a new algorithm for mining association rules over simple con-
junctive queries in arbitrary relational databases, over which functional dependencies
are assumed. The algorithm makes use of the functional dependencies of the database
to optimise the generation of frequent queries and prune redundant queries. Second,
our new algorithm is capable of detecting new functional dependencies that were not
given but that hold on the database relations or on any join of these relations. Third,
these newly detected dependencies are used to prune even more redundant queries. We
implemented our algorithm, and we showed that it greatly outperforms our previous
methods and efficiently reduces the amount of queries generated.

Several new opportunities for future work exist. First, the additional use of key and
foreign key contraints is an issue that we are currently investigating. Other appealing re-
lated constraints are conditional functional dependency, introduced by Fan et al. [3]. As
these constraints generalise standard functional dependencies using selections, it seems
interesting to investigate how they could be used and discovered in our framework.
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